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I. INTRODUCTION

The efficiency of a thermocelectric device is fundamentally limited by the
physical properties of thermoelectric materials, which can be quantified through the

dimensionless Figure of Merifll:
S’c
L1 = T
K

Desirable novel thermoelectric materials should have a low thermal conduc-
tivity and a high power factor (PF =S20') - so that ZT is high. Furthermore, investiga-
tion of the structure-property relationship through Hall Effect study can help in
better understanding of optimization of thermoelectric materials.

Herein we outline the approches we use to characterize these important trans-
port properties. Typical experimental set-ups and data can be found in the Thermo-

electric Materials Characterization figure in the Middle Panel.
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Figure 1. (a) Principle of measurement of electrical conductivity and See-

beck coefficient, together with experimental realization in case of (b) low

temperature

II. FIGURE OF MERIT

Even though direct measurement of Z7 is possible, it is often necessary for re-
searchers to make independent measurements of the electrical conductivity, the See-
beck coefficient, and the thermal conductivity.

1. o — Electrical Conductivity

Considering the contribution to resistance from electrical contacts, the mea-
surement of o of thermoelectric materials is often conducted in a four-probe fashion.
In order to avoid Peltier Effect contribution, a Low Frequency AC Tenique is highly
recommended. As shown in Figure 1, electrical current 7 is introduced through large-
area soldered contacts at either end of the sample. The potential difference AT is de-
termined across point-contacts attached to the sample. In principle, 6 can be given by

(together with sample cross section A and probe seperation /):
[
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As illustrated in Figure 1, the temperature difference A7 is determined by
using a pair of thermocouples. And copper branches (for low temperature, 2K-300K),

or legs of thermocouples (for high temperature, 300K-800K) are used to obtain the

electrical potential difference AV. Hence the Seebeck coefficient can be calculated by:
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Thermoelectric Materials Characterization from 2K to 800K

APPARATUS: (A) low temperature (2K-300K) test system for electrical conductiv-
ity 6, Seebeck coefficient § and thermal conductivity x; (B) high temperature
(300K-800K) test system for 6 and §; (C) Netzsch DSC 404C system used for mea-
surement of Cp (300K-1700K); (D) Flash Line 5000 system used for determination
of diffusivity D using laser flash method (300K-800K); (E) temperature dependent
(2K-300K, 300K-900K) Hall Effect measurement system.

DATA: (1-3) 6, § and x (2K-300K) for solid solution Mg,SipsSng s based
materials [2]; (4) carrier density (2K-300K) for In,CeyCo4Sb1y+, materials [2]; (5-7) o,
S and x (300K-800K) of (Co,Fe)Sbs-FeSb, composite materialsl®l; (8) carrier den-
sity (300K-650K) of TAST materials!*!

3. k — Thermal Conductivity
At low temperature (2K-300K), the technique most frequently used to deter-
mine x is the Longitudinal Steady-State Method. Researchers can use experimental
set-up described schematically in Figure 1, as long as the heating power P and ther-

mocouple seperation / are obtained (with /, 4 and AT which are previously known):
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At high temperature (300K-800K), dynamic procedure may be preferred. It
is common to obtain the thermal conductivity by measuring the density (p), the spe-
cific heat capacity (Cp, see Middle Panel (C)), and thermal diffusivity (D, see Figure 2

and Middle Panel (D)):
Kk=pC,D
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III. HALL EFFECT

Shown in Figure 3, Hall Effect can provide vital information about carrier
density and mobility. Hall Effect study can be conducted in a broad temperature
range in our lab. From 2K to 300K, a Quantum Design MPMS system combined with
an AC Bridge is used for data acquisition. From 300K to 800K, a home-made appara-
tus, together with an Oxford air-bore superconducting magnet (up to 9T), is used for

sample analysis. The whole system is shown in the Middle Panel.
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