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function h(ω) defined in equation 3.10 (see table 3.5 for the fit parameters).
The lower figures (c) and (d) show the same data, with the fit function for the
174Yb peaks subtracted off; the green lines show h(ω) evaluated with A0 =
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4.2 Block diagram of the experimental configuration used for picosecond two-
photon spectroscopy of ytterbium; the atomic beam and 556 nm laser are dis-
cussed in chapter 3. The 808 nm probe beam is produced by a commercial
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(Coherent Verdi V-12). The beam passes through a LBO frequency doubler,
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the pulse train (on an APD) and the power spectrum (on a CCD spectrometer),
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the second harmonic beam to stabilize the fundamental frequency; see section
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4.6 Spectrum of the picosecond Ti:sapphire oscillator, tuned to the 778 nm two-
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tion wavelength, but the laser spectrum is centered at the observed fluores-
cence maximum (the discrepancy is likely due to error in the spectrometer
calibration). The spectral bandwidth corresponds to approximately 0.5 nm or
∼250 GHz, near the transform limit of 220 GHz for 2 ps Gaussian pulses. . . . 111

4.7 Diagram of the rubidium vapor cell experiment, in a configuration similar to
that envisioned for noble gas vapor cells. A room-temperature rubidium va-
por cell is mounted inside a light-blocked “blackout” box, and probed with
a focused probe beam at 778 nm produced by the picosecond Ti:sapphire os-
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4.10 Representative spectrum of the femtosecond Ti:sapphire oscillator, with a
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beam. (a) Red data points correspond to both the probe laser and atomic beam
on and intersecting; the first green data point has the laser blocked (atomic
beam on) and the second has the atomic beam blocked (laser on). (b) Variation
of the measured fluorescence intensity as the probe focusing lens is moved,
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4.14 (a) Detected count rate as a function of carrier frequency (blue points), which
is extrapolated from the measured repetition rate fr under the assumption that
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5.1 Block diagram of central components in the HeXe EDM experiment. A spin-
exchange optical pumping cell containing rubidium, N2 buffer gas, 3He, and
129Xe is contained in a calcium silicate oven and heated to 150◦C by flowing
air. A magnetic field along the beam axis of approximately 4 mT is produced
by coils outside the oven (not shown). The rubidium vapor is maintained at
nearly 100% polarization by D1 optical pumping using a 100 W circularly
polarized beam (produced by a 795 nm laser diode array); this polarization is
collisionally transferred to the noble gas nuclei over a period of several hours.
The polarized gas is introduced to an evacuated EDM cell using manually ac-
tuated valves, and the cell is transported into a magnetically shielded room
whose walls include an aluminum layer for RF shielding and two layers of
µ-metal (Krupp Magnifer) for passive magnetic shielding. The cell’s silicon
electrodes are connected to high voltage leads to produce an internal electric
field, and it is placed directly underneath a nonmagnetic liquid helium dewar
containing a six-channel LTc SQUID sensor (not shown). The grounded sili-
con wafer serves as a protective barrier for the SQUIDs in case of high voltage
breakdown. A magnetic field of approximately 1 µT is supplied by three-axis
Helmholtz coils within the room (not shown), and spin precession is initiated
either by rapidly changing the direction of this applied field, or by using one
pair of coils to produce a resonant NMR pulse. . . . . . . . . . . . . . . . . . 132

5.2 (a) Spin precession signals of 3He and 129Xe at frequencies of 40.8 Hz and 14.8
Hz, respectively, detected by the LTc SQUID sensor (Z1) at a distance of about
110 mm to the center of the EDM cell. (b) Free precession decays of 3He (red)
and 129Xe (blue) (signals were filtered by a software FIR bandpass filter of
4 Hz width centered at the corresponding Larmor frequencies) (c) EDM cell
mounted on the transport system. (Reproduced from [2] with permission of
Springer; figure and caption © Springer International Publishing Switzerland
2016.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

5.3 Gradiometer signals recorded from the SQUID sensor, following a series of
NMR pulses (ordered in time from top to bottom). Note that the transverse
relaxation time increases with each successive π

4
pulse; this effect may be

due to the diminution of a large longitudinal magnetization component, which
is assumed to produce rapid relaxation of the precessing spins. When a π

2

pulse is applied instead, most of this longitudinal magnetization is rotated into
the precession plane and the transverse relaxation time increases substantially.
The small signal resulting from application of a second π

2
pulse is consistent

with the assumption that little longitudinal polarization remains after the first
π
2

pulse. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
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5.4 Typical layout of a three cell manifold prepared for filling on the vacuum sys-
tem shown in figure 5.5. The connection to the vacuum system is made with a
standard 1-1/3′′ ConFlat flange, which is attached to the glass manifold via a
Kovar joint. The open apertures (including the sidearm for alkali-loading) are
used for cleaning, and sealed with an oxygen-propane torch when the manifold
is attached to the vacuum system. Virtually any cell with a glass stem can be
attached to this type of manifold for filling, but a thermal-expansion-matching
layer may be necessary for certain glass types. The manifold – apart from the
cells – is almost always made of pyrex, or occasionally quartz. . . . . . . . . . 136

5.5 Layout of the vacuum system used for cell filling. All tubing is stainless steel. . 138
5.6 (Left) GE-180 components prepared for a sealed two-chamber EDM cell. The

bent tube is intended to regulate diffusion between the chambers and prevent
metallic rubidium from migrating into the cylindrical chamber where high
voltage is applied. (Right) Finished cell installed in an experiment. . . . . . . . 144

5.7 Schematic illustration of the first silicon wafer being bonded to an EDM cylin-
der. The bond area of about 1.5 cm2 is determined by the wall thickness of the
glass tubing, which is polished to an optical finish by hand. Whetting at the
interface is visible through the glass when bonding solution is applied to the
edge and the pieces are pressed together. Once pressed together, the pieces
should not be allowed to move until the bond has cured, and may be weighted
to maintain good contact. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

B.1 Two pulse resonance experiment, where a constant-amplitude oscillating field
acts for a duration τ starting at t=0 and again at t=τ + T . . . . . . . . . . . . 166

xx



LIST OF TABLES

1.1 Isotopes with 1S0 ground states and nuclear spin [3] . . . . . . . . . . . . . . . 7
1.2 Wavelengths for low-energy optical transitions from a 1S0 ground state to se-

lected excited states [3]. Note that the “spin forbidden” 1S0 → 3P1,
3D2 tran-

sitions are strongly suppressed in light atoms; they are shown to illustrate the
scaling of excitation wavelength with atomic number. In practice a 1D2 level
exists at a similar energy above the ground state, and this could be used instead
for multiphoton magnetometry with light atoms. For the cases of Sr, Ba, and
Ra it would probably be more convenient to choose a higher electronic level
for multiphoton excitation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.1 Naturally occurring isotopes of ytterbium [4] . . . . . . . . . . . . . . . . . . 63
3.2 Fit parameters for the data shown in figure 3.15 (b)-(d). The fit constants are

defined by the function f1(ω) given in equation 3.7. . . . . . . . . . . . . . . . 82
3.3 Fit parameters for the data shown in figure 3.16 (a)-(c). The fit constants are

defined by the function f2(ω) given in equation 3.8. . . . . . . . . . . . . . . . 82
3.4 Fit parameters for the data shown in figure 3.18 (a)-(c). The fit constants are

defined by the function g(ω) given in equation 3.9. . . . . . . . . . . . . . . . 84
3.5 Fit parameters for the data shown in figure 3.20; the fit constants are defined

by the function h(ω) given in equation 3.10. It should be noted that ω′0 − k∆
(not ω′0) is the center of gravity for the 171Yb transition, since only the mF =
+1

2
,+3

2
components are included in the fit. . . . . . . . . . . . . . . . . . . . 88

3.6 Fit parameters for the data shown in figure 3.21; the fit constants are defined
by the function h(ω) given in equation 3.10. It should be noted that ω′0 − k∆
(not ω′0) is the center of gravity for the 171Yb transition, since only the mF =
+1

2
,+3

2
components are included in the fit. . . . . . . . . . . . . . . . . . . . 88

3.7 Naturally occurring isotopes of mercury [4] . . . . . . . . . . . . . . . . . . . 94
3.8 Naturally occurring isotopes of xenon [4] . . . . . . . . . . . . . . . . . . . . 97

xxi



LIST OF APPENDICES

A The Two Level Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

B Ramsey Interferometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

xxii



LIST OF ABBREVIATIONS

APD Avalanche Photodiode

BBO β-BaB2O4 (beta Barium Borate)

BSM Beyond Standard Model

cw Continuous Wave

DAVLL Dichroic Atomic Vapor Laser Lock

E1 (Single-Photon) Electric Dipole

EDM (Permanent) Electric Dipole Moment

FWHM Full Width at Half Maximum

GTI Gires-Tournois Interferometer

ITO Indium Tin Oxide

LBO LiB3O5 (Lithium Triborate)

LIAD Light-Induced Atomic Desorption

LIF Laser Induced Fluorescence

LTc Low Tc (low critical temperature)

MPOP Multiphoton Optical Pumping

MSR Magnetically Shielded Room

NMR Nuclear Magnetic Resonance

OTS CH3(CH2)17SiCl3 (Octadecyltrichlorosilane)

PPLN Periodically-Poled Lithium Niobate

PMT Photomultiplier Tube

RF Radio Frequency

xxiii



RGA Residual Gas Analyzer

RWA Rotating Wave Approximation

SEOP Spin-Exchange Optical Pumping

SHG Second Harmonic Generation

SQUID Superconducting Quantum Interference Device

TPOP Two-Photon Optical Pumping

UVFS Ultraviolet-Grade Fused Silica

xxiv



LIST OF SYMBOLS

B magnetic field

C charge conjugation operator, or integration contour

d electric dipole moment

E electric field

F total atomic angular momentum (vector operator F)
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ABSTRACT

Optical magnetometry plays a critical role in low-energy precision measurements and
numerous other applications. In particular, permanent electric dipole moment (EDM)
searches impose strict requirements on magnetic field sensitivity of the underlying atomic
or molecular species. Other magnetometer properties – such as chemical reactivity, dielec-
tric strength, and interaction cross-sections with other species – also impose limitations on
experimental conditions.

Here, we explore a novel approach to optical magnetometry, using multiphoton tran-
sitions of diamagnetic atoms to detect Larmor precession of polarized nuclei. Resonant
probes are possible at moderate ultraviolet wavelengths, and hyperfine structure couples
spin precession to fluorescence transitions with negligible backgrounds; paramagnetic ro-
tation due to intensity-dependent dispersion may also be detectable. Nuclear spins and
nonlinear optical excitation introduce new degrees of freedom, and evade limitations aris-
ing from rapid electronic decoherence.

This dissertation reports progress towards two-photon optical magnetometry using yt-
terbium, rubidium, and xenon. We characterize the influence of probe polarization and
magnetic fields on fluorescence spectra, for one- and two-photon continuous-wave (cw)
excitation of ytterbium. Resolved hyperfine and isotope structure allow us to use spin-
zero isotopes for diagnostics and normalization, and we develop analysis for overlapping
two-photon resonances. We also report measurements of two-photon excitation in ytter-
bium and rubidium using picosecond laser pulses, and in xenon using a cw laser. Although
hyperfine structure is unresolved, the rubidium measurements are sensitive to probe field
polarization. Fluorescence spectra from two-photon excitation of ytterbium with femtosec-
ond pulses show modulation when the repetition rate changes.

Although techniques for polarizing noble gas nuclei are mature, existing cell designs
are incompatible with two-photon magnetometry. We describe development of silicate-
assisted hydroxide-catalysis bonding for both aluminosilicate EDM cells with silicon elec-
trodes, and sapphire-windowed cells that transmit ultraviolet excitation light. Progress in
measuring the 129Xe nuclear EDM is discussed. Absolute referencing of the picosecond
laser to potassium transitions is proposed for two-photon spectroscopy of ytterbium and
xenon, and a compatible frequency-tripling method is outlined to produce excitation light

xxvi



for xenon. Novel possibilities including spatial resolution and multiphoton optical pumping
of nuclear spins are considered.
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CHAPTER 1

Introduction

This thesis presents progress in the development of a fundamentally new type of precision
measurement technique: multiphoton nuclear spin magnetometry. Optical magnetometry,
in which light is used to measure the coupling of quantized angular momenta to magnetic
fields, plays a critical role in low-energy precision measurements. It is also important in
numerous other applications such as medicine, electromagnetic compatibility testing, geo-
physics and seismology, space science, and magnetic microscopy. The magnetic field sensi-
tivity required by these applications can impose severe restrictions on the underlying atoms
or molecules (resulting from the magnitude of the magnetic moment, available number
density, or experimentally achievable signal-to-noise ratio), with the result that only a few
atomic species have been employed as optical magnetometers. Other properties of the mag-
netometer – such as chemical reactivity, dielectric strength, and interaction cross-sections
with other species – also impose limitations on the experimental conditions in which it can
be usefully employed, which can conflict with an application’s technical requirements. The
experimental techniques described here offer the possibility to perform optical magnetom-
etry with a number of desirable but previously impractical atomic species, thus potentially
evading previous limitations. The multiphoton optical interaction further promises a new
set of tools for broader applications, including spatially resolved magnetometry and direct
optical pumping of noble gases from their ground states.

Previous methods of optical magnetometry rely on single photon electric dipole (E1)
transitions, which can be used to determine the strength of an external magnetic field by
optically measuring the Larmor precession frequency of electronic spin angular momenta.
Nuclear spin precession is also used for atomic magnetometry; in this case the Larmor
frequency is usually measured using conventional methods of nuclear magnetic resonance
(NMR), superconducting quantum interference devices (SQUIDs), or an auxiliary optical
magnetometer to detect the precessing magnetization of a polarized ensemble. Optical
magnetometry has also been demonstrated with nuclear spins – by exploiting the hyperfine
interaction, which couples nuclear spin dynamics to E1 electronic transition amplitudes –
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but in most cases relatively high E1 transition energies result in prohibitively short probe
wavelengths.

However, optical magnetometry based on the nuclear spins of diamagnetic atoms af-
fords several advantages in comparison to alternative methods based on electronic angular
momentum or inductive detection. These mainly result from weaker coupling to the exter-
nal environment, which considerably reduces the impact of noise sources and systematic
shifts that limit other magnetometers. At the same time, this means that nuclear spins are
more challenging to optically polarize and interrogate than their electronic counterparts;
our goal is to establish a reasonable compromise between technical complexity of a new
method, and the advantages it offers.

In particular, the long coherence times and small spin-flip cross-sections of polarized
nuclei contribute to improvements in statistical sensitivity. Moreover, a large dynamic
range in both field strength and temperature opens up the possibility to perform magne-
tometry in many environments where existing optical magnetometers cannot be used. Dia-
magnetic atoms (and the noble gases in particular) are nonreactive in comparison to alkali
metals, and therefore suitable for a wider range of applications. Many diamagnetic atoms
are also interesting for fundamental physics experiments, in particular those in which nu-
clear structure leads to large expected enhancements in sensitivity to CP -violating physics.
Next-generation experiments searching for permanent electric dipole moments (EDMs)
will rely heavily on magnetometry with polarized nuclear spins, and new techniques for
optical magnetometry will be key to controlling systematic errors in this type of measure-
ment.

By using multiphoton (and especially two-photon) transitions, atoms such as xenon and
radon can be excited from the ground state with existing laser light sources. In comparison
to the excitation wavelengths for single-photon electric dipole transitions (which lie in the
vacuum ultraviolet), the deep ultraviolet wavelengths required for two-photon transitions
can be manipulated with relatively conventional optical methods. For higher-order transi-
tions, the wavelength requirements are further relaxed at the expense of reduced excitation
rates. Another important feature of multiphoton spectroscopy is that fluorescence detection
can use wavelengths that are far removed from the excitation wavelength, due to cascaded
radiative relaxation through states that were not directly excited. Spectral filtering thus
allows us to perform essentially background-free measurements, where small excitation
rates can be detected by photon counting or coincidence measurements at the fluorescence
wavelength.

The optical probe must be sensitive to hyperfine structure in the excited electronic spec-
trum, since this provides the mechanism that couples nuclear spin polarization to optical
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excitation. Narrow bandwidth continuous-wave (cw) lasers can easily resolve hyperfine
structure in the excited sate, and the polarization of the exciting light determines which
Zeeman sublevels are probed. Pulsed lasers (whose bandwidth may greatly exceed the hy-
perfine splitting) can also provide the required spectral resolution, provided that the carrier
wave is phase-coherent between pulses and that the excited state lifetime is greater than the
interpulse time delay. The frequency spectrum of a modelocked pulsed laser is fully con-
strained by two radio-frequency parameters, which can be measured and experimentally
stabilized or modulated.

Pulsed lasers provide an easier path to high power deep ultraviolet light sources, since
resonant cavities are not generally required for nonlinear frequency mixing (as they are in
the cw case). They also provide a means to alleviate certain technical limitations, such as
multiphoton ionization (which can lead to high-voltage breakdown in EDM experiments)
and photodegradation of ultraviolet optical components. The excitation rate is comparable
to that obtained from a cw laser of the same average power, and may be enhanced by certain
pulse shapes and excitation geometries.

In the following sections we summarize the motivations and methods for multipho-
ton magnetometry with nuclear spins, and survey similarities and differences to existing
techniques. The application to EDM searches is highlighted, and impact on leading sys-
tematics briefly discussed. This chapter concludes with an outline of the dissertation, and
the remaining chapters discuss in detail several experiments with cw and pulsed lasers that
probe nuclear spin polarization with two-photon transitions in diamagnetic atoms, as well
as the underlying theory.

1.1 Broad Motivation: Searches for New Physics

Precision measurements at low energy have stringently tested the extremely successful
Standard Model of particle physics [5–8], and currently provide some of the most defini-
tive experimental constraints on theories that seek to extend it [9–11] – as well as some
of the most intriguing open questions [12–14]. Broadly speaking, experimental searches
for physics Beyond the Standard Model (BSM) can be approached in two complementary
ways: via direct searches for new particles or interactions at high center-of-mass energies
(where the Standard Model’s deficiencies may be relatively significant), or by careful anal-
ysis of known low-energy interactions with the aim of identifying or constraining small
contributions from new sources. The former category includes high-energy collider ex-
periments, and observational studies of high-energy particles from other sources; the latter
includes a broad spectrum of experiments in atomic/nuclear and low-energy particle sys-
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tems, which are mainly concerned with precisely quantifying radiative corrections to Stan-
dard Model processes, or with somehow isolating the relatively weak signature of a new
particle or coupling from a large Standard Model “background”.

A generic feature of low-energy experiments concerned with BSM physics is that the
energy scale of new physics must be somehow coupled to experimental apparatus in which
Standard Model physics overwhelmingly dominates. (The Standard Model quite ade-
quately accounts for the essential features of existing experimental methods.) Such experi-
ments therefore require exquisitely detailed knowledge of the Standard Model background,
such that BSM effects can be unambiguously identified and distinguished from it. Back-
ground characterization is confounded by two classes of effects: statistical limits relating
to the quantity and precision of obtainable data, and systematic effects in which some Stan-
dard Model contribution has an experimental signature indistinguishable from the prospec-
tive BSM signal. Experimental improvements are largely driven by technological advances
that minimize the impact of systematic correlations (in addition to technological advances
that increase the rate of data production).

A corresponding problem occurs in the theoretical interpretation of experimental re-
sults. Since the fundamental BSM physics is not probed directly, it may couple to exper-
iments through subtle and quite complex mechanisms. Even an unequivocal experimental
signature may not be straightforwardly connected to parameters in the fundamental theory;
this obviously motivates a great deal of theoretical work seeking to elucidate the coupling
of fundamental parameters to experimental observables, but it also highlights the need for
multiple measurements in complementary systems. Generally speaking, it is possible to
jointly constrain parameters in an effective field theory (or even the fundamental BSM
source) by combining results from systems in which the mechanisms of intermediate cou-
pling differ [15].

Although experimental techniques and their underlying technologies are diverse and
continually evolving, two early themes remain consistently present: control and stabiliza-
tion of electromagnetic fields,1 and frequency-based metrology.2 The two naturally go
hand-in-hand, and indeed were crucial to the most numerically precise determinations of
Standard Model parameters (see [6] for the most conspicuous example). Interestingly, the
basic approaches to magnetic field control and frequency metrology have not substantially

1Qualitatively, we can explain this circumstance by the fact that electromagnetic interactions dominate
everyday physics. In practice, they are by far the most easily manipulable of the four “fundamental” Standard
Model forces.

2It is unofficial canon that, “in experimental physics a precision measurement is almost always a frequency
measurement, and the easiest way to study an effect with precision is to find an observable frequency that is
sensitive to that effect” [16].
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changed in recent decades. The work presented here aims to expand the set of atomic
systems that can be probed and manipulated at a level of precision useful for modern BSM
searches, by introducing a novel technique for measuring the coupling of atoms to magnetic
fields.

1.2 Precision Measurements in Low-Energy Atomic Sys-
tems

Atomic and molecular systems provide unique experimental opportunities to investigate
the low-energy signature of BSM physics, since the test systems of interest are relatively
stable and abundant. Probing many identical (albeit composite) particles for a long time
is necessary for statistical precision, and doing so under stable and adjustable external
conditions allows a careful experimenter to mitigate the leading systematic effects. In
these systems, the known interactions of the Standard Model background are very well
described by the interactions of classical electromagnetic fields with charged particles, with
and without spin. These interactions are understood in exquisite detail, and numerous
highly refined techniques for controlling them experimentally are now commonplace.

Searches for permanent electric dipole moments (EDMs), spin-mass couplings, viola-
tions of local Lorentz invariance, and other BSM physics are readily accomplished via tech-
niques borrowed from precision laser and NMR spectroscopies. The metrological precision
of optical magnetometers, along with with the fact that many of these searches depend on
the response of a system to a magnetic field, imply that modern precision measurements
almost invariably rely upon optical magnetometry. It should, of course, be mentioned that
the techniques of precision measurement also find ready application outside the search for
new physics (see, for example, Part II of [17] for a relatively comprehensive survey relating
specifically to optical magnetometers).

1.3 Approaches to Optical Magnetometry with Warm Va-
pors

The essential feature of optical magnetometry is that polarization moments of an ensemble
density matrix3 couple both to an external magnetic field, and to optical radiation. Suppose

3Strictly speaking, of the density operator – see section 2.1.1.
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an ensemble of atoms with magnetic structure is prepared in a polarized state4 (e.g., by op-
tical pumping) and subjected to an external magnetic field. The energy splittings between
different eigenstates include terms due to the linear or nonlinear Zeeman effects, which
couple the field to the atomic (magnetic) dipole moment. Therefore, the dynamical phases
associated with time evolution in this field depend on the field strength. Optical radiation
can induce a new coupling between particular eigenstates, thereby permitting an exper-
imental determination of their relative phase. Under suitably controlled conditions, this
phase is directly related to the absolute field strength through fundamental constants and
good quantum numbers, and optical magnetometers thus readily achieve “calibration-free”
field measurements.

Optical magnetometers currently provide the most sensitive means of measuring mag-
netic field strengths, with demonstrated sensitivities well below 1 fT/

√
Hz [18]. Although

great variety exists in the detailed schemes of individual systems and applications,5 some
universal themes are surprisingly restrictive. Chief among these is the use of single-photon
electric dipole (E1) transitions, followed closely by the overwhelming prominence of al-
kali metals and metastable helium as the atomic species of choice.6 The reason for this
pattern is obvious: these are by far the most technologically mature and experimentally
convenient choices, but specific measurements impose specific requirements that need not
be compatible with mature or convenient technologies. Indeed, we have reached a stage
where precision measurements (for example, [9]) can be limited by systematic effects in a
reference magnetometer, rather than in the system nominally under investigation.

Next-generation precision measurements require fundamentally new technologies, and
an optical magnetometry scheme based on nuclear spins in closed-shell7 atoms (see table
1.1) offers certain advantageous features unavailable in previously existing systems. Most
of these advantages are associated with the lack of unpaired electrons in the ground state,
since such atoms tend to be less chemically reactive than the alkalis, and the nuclear spin is
well shielded from residual perturbing interactions. The resulting long coherence times and
small spin-flip cross sections are well known in the context of NMR with hyperpolarized
diamagnetic atoms [19–21], but for the most part these atoms have not been explored as
optical magnetometers – and even the exceptions (e.g., [22–24]) frequently still rely on E1

4We will sometimes use the term polarized state to indicate any density matrix with nonvanishing mo-
ments higher than the monopole (rank zero). Somewhat confusingly, the term polarization is also commonly
used to denote the magnitude of the dipole (rank 1) moment. See section 2.1.1 for a brief discussion of
nomenclatural conventions.

5See, e.g., the variety of topics covered in [17].
6The most notable exception is mercury [9,10], which also deserves special mention as the most prominent

example of an optical magnetometer based on nuclear rather than electronic spin.
7By which we often really mean closed sub-shell, e.g. the np6 configuration of the noble gases.
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Table 1.1: Isotopes with 1S0 ground states and nuclear spin [3]

Atomic Number Isotopes Electron Configuration Nuclear Spin I

2 3He 1s2 1/2+
4 9Be 2s2 3/2
10 21Ne 2s22p6 3/2
12 25Mg 3s2 5/2
18 Ara 3s23p6 0
20 43Ca 4s2 7/2
30 67Zn 3d104s2 5/2
36 83Kr 3d104s24p6 9/2
38 87Sr 5s2 9/2
48 111,113Cd 4d105s2 1/2, 1/2
54 129,131Xe 4d105s25p6 1/2, 3/2
56 135,137Ba 6s2 3/2, 3/2
70 171,173Yb 4f146s2 1/2, 5/2
80 199,201Hg 4f145d106s2 1/2, 3/2
86 211,219,221,223Rnb 4f145d106s26p6 1/2-, 5/2+, 7/2+, 7/2
86 223Ra 7s2 1/2
102 Nob 5f147s2

aAll stable isotopes of argon have I = 0
b unstable isotopes
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excitation of alkali atoms.6

The disadvantages of a magnetometer based on closed-shell atomic species are fairly
obvious: 1) the nuclear spin does not couple directly to the electric dipole operator, and
2) electrons in closed sub-shells tend to be tightly bound, with the result that relatively
short wavelengths are required for optical excitation. Whereas for all alkalis the unpaired
electron can be excited with photon energies less than about 2 eV,8 the lowest-lying dipole-
allowed excited state of mercury (in some sense the best case for a nuclear spin magnetome-
ter) is nearly 5 eV above the 1S0 ground state. The corresponding transition wavelength of
254 nm actually is commercially available, but remains far removed in convenience, cost,
and versatility from the diode laser systems that are readily available for alkali metals. For
the noble gases the situation is considerably worse, with all wavelengths for E1 transitions
from the ground state lying in the vacuum ultraviolet.

To address the first point, we observe that the hyperfine interaction mixes eigenstates
of I and J (the total nuclear and electronic spin operators, respectively). Since the ground
state has no electronic angular momentum, hyperfine structure occurs only in the excited
state. An optical field of narrow bandwidth can excite a single hyperfine component of the
excited state, and is therefore sensitive to nuclear spin moments. For example, figure 1.1
illustrates a situation in which only the ground state sublevel with mI =−1

2
is excited.

Figure 1.1: Optical E1 excitation from a ground state with J = 0, I = 1
2

to an excited state
with J = 1, I = 1

2
. If the optical field is circularly polarized, then each photon carries one

unit (~) of angular momentum and only transitions with ∆mF = 1 are possible. Spectro-
scopic terms are shown at left, and eigenvalues of total angular momentum (F = I + J) at
right; both F ′= 1

2
and F ′′= 3

2
belong to the 1P1 term. We have assumed that the hyperfine

splitting is large compared to the bandwidth of the optical field, such that only the lower
hyperfine component of 1P1 is resonantly excited.

The second point can be approached from two perspectives: one can either develop
new light sources at extreme ultraviolet wavelengths, or alternatively find a way to make

8Resonant wavelengths in the range of 589 nm (sodium) to 895 nm (cesium).
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do with existing sources of lower-energy photons. The first approach is an active but very
challenging area of current research [25]; we shall instead focus on the use of multiphoton
resonances to ease the wavelength requirements. This type of nonlinear optical process may
be considered as higher-order contributions in a perturbative expansion of the atom-field
interaction, where the perturbation parameter is the fine-structure constant α ≈ 1/137.
The leading-order term in this series is the usual E1 interaction; we therefore expect the
interaction strength to rapidly diminish as the number of participating photons increases.
The perturbative scattering rate for an n-photon transition between states a and b, excited
by an electric field with constant amplitude E and frequency ω (which is not resonant with
any intermediate state),9 is given by

R
(n)
ba =

∣∣∣∣∣En

~n
∑
i,j,...,k

daidij · · · dkb
∆

(n−1)
ia ∆

(n−2)
ja · · ·∆(1)

ka

∣∣∣∣∣
2

2πρ(δ). (1.1)

This result is obtained from a straightforward generalization of the perturbation theory
methods described in [26]. The sum extends over all dipole-allowed intermediate states,
dij is the electric dipole matrix element for the i→ j transition, δ=ωba − nω=∆

(n)
ba is the

n-photon detuning from the a→ b transition, and ρ(δ) is a lineshape function obtained by
convolution of the probe frequency spectrum with the density of final atomic states. The
energy defects ∆

(m)
ia =ωia −mω express the m-photon detuning from the a→ i transition,

and products of these comprise the resonance denominator for each amplitude in the sum.
Dependence on the field polarization and propagation vectors enters mainly through the
matrix elements, while frequency dependence (including the Doppler effect) is determined
by the lineshape function and resonance denominator.

Since the driving field need not be resonant with any intermediate levels, the detuning
factors ∆

(m)
ia are typically large (in many cases comparable to, or even greater than, ω).

Thus we see that as n increases, each term in the sum of amplitudes is suppressed by ad-
ditional intermediate detunings. A few possibilities exist for enhancing the scattering rate
(e.g., an intermediate resonance, or a combinatorially favorable spectrum of field frequen-
cies and nonresonant states), but the most direct path to a high transition probability is to
choose n as low as possible and then maximize the values of E and ρ(δ). Thus when E1
excitation is impractical, n = 2 is the obvious alternative.

We should at this point emphasize the nonlinear scaling of R(n)
ba with E for n> 1. For

n = 1, a two-fold increase in optical intensity results in a two-fold increase in transition
rate; this is the linear response of “linear” optics. For n > 1 the E2n scaling makes it

9The “intermediate” states need not actually lie between the initial and final states, and may even include
substantial contributions from the continuum.
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possible to achieve a considerable increase in transition probability for a relatively modest
increase of optical intensity. (In the language of nonlinear optics, this is a non-parametric
process related to the imaginary components of higher-rank tensor susceptibilities.) Since
most practical light sources for two-photon spectroscopy of diamagnetic atoms leave us
decidedly in the perturbative regime, we can for now ignore saturation effects and expect
that even small increases of output power will produce relatively large increases of signal.

Finally, we note some additional properties of the multiphoton nuclear spin magne-
tometer. These may be held in mind for comparison during the subsequent discussion of a
generic alkali magnetometer, and will resurface later in both theoretical considerations and
the exposition of experimental studies.

1. The nuclear magneton µN is smaller than the electronic Bohr magneton µB ≈
9.274 × 10−24 J/T by a factor of the proton-to-electron mass ratio, mp/me ≈ 1836.
The intrinsic field sensitivity is reduced by a corresponding factor, as is the Larmor
precession frequency (the quantity measured in experiments).

2. NMR-based nuclear spin magnetometers have been used extensively, but typically
require different readout methods at different field strengths. SQUIDs are very effec-
tive at low field, but require extensive cryogenic apparatus and extreme field stability.
Inductive pickup coils work well at intermediate and high field strengths, but require
large magnetization fields (i.e., high polarization10 or large samples) and have limited
bandwidth. Alkali magnetometers can function across a wide range of field strengths,
but require geometrical proximity to the sample (as do SQUIDs and coils). An op-
tical probe can have a frequency measurement bandwidth from DC to GHz (fields
from zero to >100 T for a nuclear magnetic moment), and can be used remotely and
in drifting fields.

3. The n-photon absorption process is followed by radiative relaxation of the excited
state. This typically proceeds by cascaded E1 emission through real energy levels,
and produces a fluorescence signal at wavelength(s) considerably different from the
excitation light. It is therefore simple to spectrally filter the signal light from the
excitation light; optical magnetometers based on E1 transitions must usually isolate
the signal from a large background produced by the driving field, since the resonance
and response occur at the same optical frequency. This low-background environ-
ment compensates to some degree for the low transition probabilities expected for
multiphoton excitation. We also note that radiation trapping of the excitation light

10In the sense of dipole moment per unit volume.
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is not a concern, and that the first fluorescence photon will typically exit the vapor
unimpeded.

4. For E1 resonances, absorption and dispersion may be considered (respectively) as
the imaginary and real parts of a linear susceptibility. Similarly, there is a parametric
counterpart to the nonlinear process of multiphoton absorption – i.e., an intensity-
dependent refractive index. Much as E1 alkali magnetometers are frequently based
on off-resonant dispersive atom-field interactions, we can envision a multiphoton
magnetometer based on similar effects at higher order. The experimental signal (e.g.,
rotation of the plane of linearly polarized light) is completely analogous, except that
the refractive index now depends on intensity.

5. Existing optical magnetometers are constrained to a fairly restrictive range of oper-
ating temperatures and atomic number densities; the vapor pressures of alkali met-
als and mercury are strong functions of temperature, and both are incompatible with
cryogenic applications. Additionally, although high number densities are required for
statistical precision, they also increase the rate of depolarizing collisions and spatial
averaging. Surface coatings [27, 28], buffer gases [29, 30], and light-induced atomic
desorption (LIAD) [31,32] are partial remedies, but ultimately of limited utility when
electron spins dominate the ground state magnetic field coupling. On the other hand
noble gas magnetometry is compatible with high densities and low temperatures,11

since the shielded nuclear spins are substantially less affected by depolarizing colli-
sions with walls and other atoms or molecules. A noble gas can also act as its own
buffer gas, which simultaneously limits spatial diffusion and increases the number of
atoms contributing to the measurement.

6. The nonlinear scattering rate offers the possibility to spatially localize the atom-field
interaction, e.g. at the focus of a laser beam. Combined with buffer-gas-restricted dif-
fusion, this allows in principle measurements with longitudinal as well as transverse
spatial resolution on length scales considerably smaller than a vapor cell (particularly
in the range of 1µm to 1mm). A simple scaling argument shows that for the case of
two-photon excitation, the field sensitivity is independent of the volume probed: es-
sentially, for a focused beam the increase in intensity compensates for the reduction
in atom number (see below and section 2.5).

7. Just as nuclear spins can be challenging to probe, they are difficult to polarize in the

11Even, it turns out, in the liquid [33] and solid [34] states.
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first place.12 However, a sufficiently intense light source can modify the ground state
population distribution by multiphoton excitation, i.e. optically pump the atoms.
This is a possible means to avoid spin-exchange optical pumping, which, despite
being by far the most efficient method of polarizing noble gas nuclei, considerably
increases the technical complexity of an experiment and can introduce a variety of
limitations and systematic errors. We shall refer to Two-Photon Optical Pumping and
Multiphoton Optical Pumping, respectively, as TPOP and MPOP.

8. Pulsed lasers can more efficiently produce the short wavelengths required to excite
noble gases, and with less damage to laser elements or downstream optics than their
continuous-wave (cw) counterparts. The spectrum of a modelocked pulsed laser con-
sists of many discrete modes, whose absolute amplitudes and frequencies can be
regulated by a small number of experimentally accessible degrees of freedom. For
multiphoton transitions, a mode spacing can usually be chosen that substantially re-
produces the frequency resolution of a narrow-bandwidth cw laser without loss of
signal. Since the excitation amplitudes corresponding to different paths and mode
combinations add coherently, the scaling of excitation probability with n is consid-
erably better than the cw case.

1.3.1 The Common Optical Magnetometer

The prototypical optical magnetometer is a one-electron atom with nuclear spin ignored
(i.e., an alkali metal with I=0).13 It is well described by LS coupling, with a spectroscopic
term symbol 2S 1

2
for ground state and 2P 1

2
, 3
2

for the lowest-lying excited states, as shown
in figure 1.3. The terms 2P 1

2
and 2P 3

2
couple to the ground state via single-photon electric

dipole (E1) transitions that are commonly referred to as D1 and D2, respectively.
We suppose that the spectral bandwidth of the driving field is sufficiently narrow that

D2 excitation can be neglected, and hereafter consider the atom as a two-level system.
The ground state and excited state are then treated as two-level subsystems, and we are
primarily concerned with the dynamical evolution of the spin 1

2
ground state in a uniform

external magnetic field B. For a given quantization axis n̂, we represent the 2S 1
2

sublevel
with mJ = ±1

2
by the ket |±〉n.

An atom initially prepared in the pure state |ψ(0)〉 = |+〉z can also be represented by

12After all, the same physics accounts for both difficulties – and for the desirable features that originally
motivated us to consider them.

13This is a superficially fictional object, but a pedagogically useful one; note also that several unstable
isotopes fit this description. Chapter 4 discusses the extension of two-photon optical magnetometry to certain
unstable species, albeit ones having finite nuclear spin.

12



Figure 1.2: Schematic illustration of a conventional all-optical magnetometer. The atoms
are optically pumped along the axis of a static field B = Bẑ, after which the spins are
rotated into the xy plane to initiate free precession. The precession is detected via the
transmitted component of a probe beam along x̂.

a coherent superposition of |±〉x. If the magnetic field is applied in the direction x̂, then it
makes sense to discuss time-evolution in terms of the Jx eigenstates:

|ψ(t)〉 =
e−iEt/2~ |+〉x − eiEt/2~ |−〉x√

2
, (1.2)

where E = ~ω0 =
∑
anB

n is the energy splitting between |+〉x and |−〉x and we take
the zero of energy to coincide with the twofold-degenerate energy of 2S 1

2
at B = 0. For

weak fields and certain choices of angular momentum eigenstates (which are automatically
satisfied in the present case), the power series has negligible contributions from all but the
n = 1 term; in this case ω0 is known as the Larmor frequency, and we typically write it in
terms of a Landé g-factor and dimensionful magnetic moment (here, µB) as

ω0 =
gJµBB

~
. (1.3)

The superposition state in equation 1.2 clearly involves a time-dependent relative phase,
regardless of the eigenbasis chosen for representation of the state kets. The probability to
find the atom in, for example, |−〉z is

|〈ψ(t)|−〉z|
2 = sin2 ω0t

2
. (1.4)

This can be understood as a coherent oscillation of the ground-state population (in the basis
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Figure 1.3: Electronic structure of an idealized alkali without nuclear spin, including Zee-
man sublevels. The solid arrow indicates D1 excitation with left circularly polarized (σ̂+)
light, and dashed arrows show allowed decay pathways for spontaneous emission. The
numbers 1

3
and 2

3
are branching fractions due to angular momentum coupling for E1 transi-

tions.

of Jz eigenstates) between |±〉z, i.e. as a special case of quantum beating. A measurement
that probes the instantaneous population of m(z)

J = −1
2

will display a characteristic mod-
ulation at the frequency ω0, which is proportional to the magnetic field. Experimentally
determining this modulation frequency constitutes a measurement of the magnetic field
magnitudeB (the other quantities in equation 1.3 are assumed to be independently known).

One possibility for such a measurement is optical excitation of the σ̂+ transition shown
in figure 1.3. Both the absorptive and dispersive components of the atom-light interaction
are frequency-modulated at ω0; several different types of magnetometric measurement are
therefore possible. In practical terms, all require an ensemble of many identically prepared
atoms (although for theoretical purposes one could equally well imagine a series of repeated
measurements on the same system).14

The density operator for an ensemble of these atoms can be expressed in spherical
tensor components, the coefficients of which are commonly referred to as polarization mo-
ments [17, 36]. The set of polarization moments provides a quantitative measure of coher-
ence and population distributions across the spectrum of pure states available to the atoms.
A considerable advantage of the density matrix formalism is that it readily treats incoherent
ensembles and decay mechanisms that are not easily expressed or motivated in a picture
based on pure energy eigenstates.

Our model system has total angular momentum J = 1
2
, and therefore only the lowest

two ranks of polarization moments can be nonvanishing: the monopole ρ0, which is pro-

14See [35] for an apparent exception to this principle, which is related to the geometric phase effects
discussed in section 2.6.
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portional to the total population; and the dipole ρ1, which is often referred to as orientation

and in our spin-1
2

system relates to the polarization asymmetry or visibility ratio

Pz =
| 〈ψ|+〉 |2 − | 〈ψ|−〉 |2

| 〈ψ|ψ〉 |2
=
| 〈ψ|+〉 |2 − | 〈ψ|−〉 |2

| 〈ψ|+〉 |2 + | 〈ψ|−〉 |2
(1.5)

=
Tr[Jzρ]

Tr[ρ]
. (1.6)

This vanishes for an unpolarized state, and is commonly used as a figure of merit for initial
state preparation leading up to a spin precession measurement. Pz also limits the sensitivity
of time-domain Larmor frequency measurements, since it is proportional to the peak-to-
peak contrast resulting from modulation of the atom-light interaction probability.

1.3.1.1 One-Photon Electric Dipole Transitions

Much as alkali atoms are the workhorse of modern atomic physics, the single-photon elec-
tric dipole (E1) transition is by far the preferred means of interacting with them; this is
primarily due to the relatively high scattering rates that can be achieved with commercially
available diode lasers for most alkali D-lines.

The “fundamental” transition probability15 for single-photon emission from b to a is
[37]

PabdΩ =
e2~ωba
2πm2

ec
3
|Dk,ε

ab |
2dΩ, (1.7)

where the wave vector k of the photon field lies in the solid angle dΩ, ~ωba is the energy
separation between the two levels, andD is a matrix element that characterizes the strength
of the atom-field coupling:

Dk,ε
ab = i~−1 〈a|

∑
i

eik·ri(ε · pi) |b〉 , (1.8)

where the sum ranges over all electrons and ri,pi are respectively the position and momen-
tum operators for the ith electron. When the exponent k ·ri� 1, we can approximate the
exponential by unity and cast the matrix element into the form

15This is, in fact, the probability for spontaneous emission when b lies above a in energy. It can be related
to the probabilities for absorption and stimulated emission through the principle of detailed balance, which
leads to the well known rate equations due to Einstein. It should be emphasized that, although these three
interactions must balance each other in thermal equilibrium, the matrix elements involved are fundamental
properties of the interaction, which do not depend on thermodynamics.
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(ε ·D)ab = i~−1(ε · p)ab = meωba~−1(ε · r)ab. (1.9)

We now consider the operator D to be a vector independent of k, and proportional to
the total electronic position or momentum operator (p =

∑
ipi, and r =

∑
i ri). This

approximation, known as the electric dipole approximation, is equivalent to neglecting
higher-order electromagnetic multipoles of the optical field. Qualitatively, it is valid when
spatial variation of the field amplitude can be neglected on the characteristic length scale
of the electronic wavefunctions.

The atom-field interaction can then be described by the matrix elements of an electric

dipole operator,16 d = −er. This corresponds to a term −d · E in the effective Hamil-
tonian for an atom interacting with an optical electric field E; the interaction strength is
conveniently parameterized by the Rabi frequency,

Ωab =
〈a| er · E |b〉

~
, (1.10)

which contains information on the angular momentum coupling of the field polarization
to the atomic eigenstates a and b. In particular, µ can be expressed as a rank 1 spherical
tensor operator, which accounts for the usual electric dipole selection rules required by
angular momentum conservation. The relative strengths of absorption lines and radiative
branching ratios can be viewed as arising from the angular momentum coupling coefficients
that contribute to this matrix element.

We know from equation 1.2 that the ground state spin orientation rotates at the Larmor
frequency in our model magnetometer. Now we introduce the probe coupling shown in
figure 1.3; the Rabi frequency is

Ω = ~−1

〈
ψ(t)

∣∣∣∣er · E∣∣∣∣2P 1
2
,m

(z)
J = +

1

2

〉
= ~−1 sin

ω0t

2

〈
2S 1

2
,m

(z)
J = −1

2

∣∣∣∣er · E∣∣∣∣2P 1
2
,m

(z)
J = +

1

2

〉
= −|E| 〈r〉

~
√

3
sin

ω0t

2
, (1.11)

where 〈r〉 is the purely radial matrix element between the two states, and we have skipped
several simplifying steps involving the reduction of angular momentum coupling coeffi-
cients. Now in general the E1 scattering rate is simply

16This is an induced electric dipole moment, to be clearly distinguished from the CP -violating permanent
electric dipole moments discussed later.
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R
(1)
ba =

∣∣∣∣Edab~

∣∣∣∣2 2πρ(δ)

≈ 1

Γb
|Ωab|2 , (1.12)

where Γb is the radiative lifetime of the upper state, and we have assumed δ = 0 in the
second line. In our magnetometer example, the rate of absorption from the probe beam
then reduces to

R ≈ 2I 〈r〉2

3ε0c~2Γ
sin2 ω0t

2
. (1.13)

It should be noted that equation 1.12 also describes the E1 optical pumping rate, and that
this is the same physics typically used to initially polarize an ensemble of atoms in prepa-
ration for a spin precession measurement. In general, the optically induced polarization
will relax at a characteristic rate Γr = T−1

1 , where T1 is known as the spin lifetime or
longitudinal relaxation time (this is analogous to spin-lattice relaxation in classical NMR).
This rate depends on a number of physical mechanisms to be discussed later, most notably
depolarizing collisions and field inhomogeneities. The effect of optical pumping on the
ground state population distribution across Zeeman sublevels will be significant when the
excitation rate exceeds relaxation processes, i.e. when κ � 1, where the dimensionless
saturation parameter is defined by

κ ≡ |Ωab|2

ΓrΓb
. (1.14)

Conversely, during a spin precession measurement (when we wish to introduce as little
perturbation to the populations as possible) the experimental requirement is κ � 1. We
may therefore imagine optically pumping the atoms with a static field along ẑ using high-
intensity light, and then flipping the field17 rapidly to x̂ at the same time as the light intensity
is reduced to a value well below the saturation threshold.

It is worth noting that many real alkali magnetometers in fact use a modulated optical
field to more sensitively detect or lock to ω0. It is also common to base the measurement
on dispersive rather than absorptive resonances, e.g. through the rotation of linear polariza-
tion. The simple example given here also extends readily to higher field strengths, where
equation 1.3 breaks down and it is necessary to use the full Breit-Rabi solution for the
energy eigenvalues [17],

17Or the probe wave vector and the spins.
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E(F,mF ) = −A
4
− gIµBmfB ±

A

2(2I + 1)

√
1 + x2 +

4mFx

2I + 1
, (1.15)

where A is the hyperfine structure constant and x = 2(gI + gJ)µBB/A(2I + 1) is the
perturbation parameter in the intermediate coupling regime. There is immense variety to
the details of individual magnetometers, even within the restrictive subset of E1 alkali
transitions; our purpose at the moment is simply to give an impression of the underlying
mechanisms and the capabilities that follow from them.

1.3.2 Spatial Averaging

Due to atomic motion and spatial confinement of the probe field, optical magnetometers
measure a weighted average of the magnetic field strength within some characteristic vol-
ume. Several different length scales contribute to the determination of this volume, most
notably: the cell’s dimensions, the diffusion length over a measurement period, and the
dimensions of any optical beams (if smaller than the cell). It is relatively easy to obtain
information on length scales larger than a cell (by moving the cell, duplicating the device
in another location, or building a larger cell);18 spatial resolution at small length scales is
typically more challenging.

An obvious solution is to build smaller vapor cells, and indeed microfabricated al-
kali cells have been very successful down to millimeter dimensions [38]. There are good
prospects for even smaller cells and sensor heads, but the technological requirements for
producing such devices can be quite intensive. There are further limitations due to the high
rate of depolarizing wall collisions, the corresponding need for high-quality antirelaxation
coatings, and the competing requirement to operate at relatively high pressures to achieve
a given sensitivity [39].

Yet another approach is to restrict atomic motion by introducing a non-depolarizing
buffer gas [40] or cooling the ensemble [41]. The latter introduces a set of technical chal-
lenges in its own right and we will not discuss it in depth, except to mention that it has been
commonly assumed that cold atoms offer the most pragmatic approach to sub-millimeter
spatially resolved magnetometry. This is because for laser-cooled atoms trapped in vacuum,
the entire atomic sample is typically confined to the intersection of several laser beams (a
volume of order 0.5 mm3) or optical dipole traps (of order 10−6 mm3). Confinement to
a fraction of a cubic micron is possible in optical lattices. In contrast, atoms in a typical

18However, there are significant challenges associated with measuring or precisely estimating the field
in a location where it is not possible to place a magnetometer, even when multiple measurement locations
surrounding the point of interest are available.

18



coated vacuum alkali cell can easily cross the cell many times between being polarized
and probed. Therefore, even if the pump and probe light are localized to a small volume,
the field is nevertheless averaged over the entire cell – whose typical dimensions are in the
range of a few centimeters.

The basic difficulty associated with buffer gas restricted diffusion is that collisions with
buffer gas atoms are not entirely benign, especially for a magnetometer relying on elec-
tronic spin coherence. The cross sections for spin destruction, which may be neglected at
sufficiently low pressures, play an increasingly significant role in relaxation as the collision
rate increases. For a nuclear spin optical magnetometer with zero ground state electronic
angular momentum, the primary concern is pressure broadening of the probe transition.

Even if we concede that a nuclear spin magnetometer can operate in the “buffer gas”
regime, a typical optical probe still integrates along the beam axis and so averages in at least
one dimension. When driving an E1 transition, a focused beam still interacts significantly
with atoms well outside its Rayleigh range. Furthermore, focusing has minimal effect
on magnetometers based on polarization rotation, since the refractive index is (to leading
order) independent of intensity. The situation is completely different for a multiphoton
probe, due to the E2n scaling mentioned above. For two-photon excitation of N atoms,
now in terms of the optical intensity I = ε0c|E|2/2, we have

R
(2)
ba ≈

4NI2

ε20c
2Γb

∣∣∣∣∣∑
i

daidib

~2∆
(1)
ia

∣∣∣∣∣
2

, (1.16)

where Γb is the homogeneous linewidth of the upper state b and we have made the sim-
plifying assumption that the probe field is exactly resonant, allowing us to approximate
ρ(0) ≈ Γ−1

b .
We now observe that we can write N as the product of a volumetric number density n̄

and an interrogation volume V (assuming that n̄ is uniform in space). Supposing that the
probe beam has power P and is focused to a waist w0 (the minimum 1/e2 beam radius),
the intensity at the focus is approximately P/πw2

0. The excitation rate drops by roughly an
order of magnitude with a 3-fold decrease of intensity, so the signal will be overwhelmingly
dominated by atoms close to the focal spot. We can then approximate the excitation volume
by the product of the spot size with the Rayleigh range, i.e.,

V ≈ π2w4
0

λ
, (1.17)

and rewrite R(2)
ba in a form independent of the excitation volume and beam geometry:
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R
(2)
ba ≈

4n̄P 2

ε20c
2Γbλ

∣∣∣∣∣∑
i

daidib

~2∆
(1)
ia

∣∣∣∣∣
2

. (1.18)

Thus we see that although the region where atoms are excited can be extensively controlled
by the size and location of the beam focus, the number of excitations per unit time (and
thus the signal amplitude of a magnetometer) depends only on the atomic number density.
Figure 1.4 shows a quantitative calculation of the effective interrogation volume, including
diffusion effects.

Figure 1.4: Isosurfaces defining the effective interrogation volume. Blue represents the
envelope of a Gaussian beam with wavelength 256nm, focused to a 2µm waist. Red is
the 1/e2 surface of constant I2, and in the top figure green shows the volume from which
atoms can diffuse into the exact focal center (during a characteristic timescale that depends
on n̄). In the bottom figure, the green surface represents the 1/e2 isosurface of a convolution
between the red and green surfaces of the top figure, which is the effective interrogation
volume V . The horizontal full scale is approximately 200µm.

1.3.3 Optical Pumping

Since the magnitude of spin precession signal typically scales with the ground state orien-
tation P , methods for increasing it as close as possible to unity have become a standard
element of magnetometry schemes. The equilibrium thermal polarization at room temper-
ature is typically quite small due to the small energy splittings between populated state,
and a variety of specialized optical methods for enhancing it have become standard tools
in many laboratories. Reference [29] provides a comprehensive review of optical pump-
ing theory and methods (as of 1972), and reference [36] provides a more recent overview
of optically-induced polarization, with a great deal of detailed pedagogical material. The
timeless article [42] by Kastler, which started it all, invariably rewards inspection.
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1.3.3.1 Direct Optical Pumping: Depopulation and Repopulation

We mentioned optical pumping above in section 1.3.1; here we make a few remarks con-
cerning the two principle mechanisms or direct optical pumping. These are “depopulation”,
where the population asymmetry arises due to removal of atoms from certain states by ex-
citation; and “repopulation”, in which case where it arises from decay out of a polarized
excited state [43]. Hyperfine structure of the excited state plays an important role in op-
tically pumping the nuclear spin of a 1S0 ground state, which is substantially different for
depopulation and repopulation pumping. In both cases the hyperfine splitting must exceed
the natural linewidth of the excited state, in order that the excited state survives long enough
to couple the electronic and nuclear degrees of freedom.

Depopulation pumping is typically effective only when the excited state’s hyperfine
structure is resolved. If the spectral bandwidth of the pump light is not sufficiently narrow,
then the all hyperfine components are excited with equal probability and no nuclear spin
polarization can result. This is analogous to the situation where spin-orbit coupling in an
alkali is not resolved, and both D-lines are excited with equal probability; in that case no
electronic spin polarization can be produced.

In contrast, repopulation pumping can occur whether or not the pump field bandwidth
is narrower than the hyperfine splitting. In this case the polarization of the excited state
matters, and the population asymmetry is communicated to the ground state via radiative
decay. We require only that the homogeneous lifetime of the excited state exceed the hy-
perfine period, such that polarization can be transferred from electron to nucleus before the
population decays.

The above considerations apply mainly to cw E1 transitions, and must be reconsidered
when we discuss multiphoton optical pumping (MPOP). They remain essentially valid for
cw multiphoton excitation, but for pulsed excitation apply only under the additional as-
sumption that the atoms are not interacting with multiple, phase-coherent pulses. A phase-
coherent pulsed optical field exhibits periodic frequency structure due to inter-pulse in-
terference, with the result that it is possible to excite only one hyperfine component, even
when the total bandwidth exceeds the hyperfine splitting. This violates the apparent restric-
tion on depopulation pumping described above, and constitutes a unique feature of MPOP
as compared to conventional E1 optical pumping.

1.3.3.2 Spin-Exchange Optical Pumping (SEOP)

As an alternative to direct optical pumping, the electronic spin polarization of an optically
pumped alkali vapor is transferable to other electronic or nuclear spins. During a collision,
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when the wavefunction of an alkali electron has a significant overlap with that of another
electron or nucleus, there is a finite amplitude for them to exchange angular momentum. In
the event that this exchange takes place, the now depolarized alkali atom can be repolarized
by direct optical pumping; the timescale for optical pumping of alkali atoms is typically
orders of magnitude shorter than that for T1 relaxation of the species polarized by spin-
exchange. The Hamiltonian describing this effect has the same structure as that for the
hyperfine interaction within a single atom:

HSE = −µ0

2π
gIµNgSµB

∑
i

[
Si · I− 3(I · r̂i)(Si · r̂i)

r3
i

− 8π

3
δ(ri)Si · I

]
, (1.19)

where ri = rir̂i is the position of the ith electron and the sum ranges over the unpaired
electron in the alkali, and all electrons in the other atom. The atom to be polarized by spin
exchange has nuclear spin operator I, and the Landé g-factor gI in its ground state. The first
term represents a “long-range” dipole-dipole interaction, which due to the r−3 denominator
can nevertheless be ignored except during collisions. This is usually negligible in compar-
ison to the second term, and particularly so in spherical cells where its total contribution
vanishes due to symmetry. The second term is known as the Fermi contact interaction,
which dominates when the electronic and nuclear wavefunctions overlap in space. This
partly accounts for the strong dependence of spin-exchange efficiency on nuclear size, and
for the well known tendency of heavy nuclei (such as 129Xe) to polarize and relax much
more rapidly than light nuclei (such as 3He).

The physics of SEOP is rich and complicated [44, 45], but established techniques rou-
tinely and efficiently produce large quantities of highly polarized noble gas nuclei. These
are an essential element for many precision measurements, which would be impossible
using thermal polarization or prohibitively laborious if attempted with other sources of
nuclear polarization.19

1.4 Features of Continuous-Wave Lasers

Continuous-wave (cw) lasers have several advantageous features for multiphoton opti-
cal magnetometry, mainly deriving from the small spectral bandwidths that are routinely
achieved in actively stabilized systems. Two consequences of narrow linewidth are espe-
cially relevant here:

19E.g., metastability-exchange optical pumping.
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1. The ability to perform high-resolution spectroscopy with resolved hyperfine or Zee-
man structure, thus straightforwardly achieving sensitivity to the ground state nuclear
spin populations via angular momentum selection rules.

2. Insensitivity to chromatic dispersion, in the sense that the dispersive phase imprinted
on a sufficiently narrow optical spectrum can be approximated as constant and for
most practical purposes ignored entirely. (This completely eliminates certain types of
quantum interference between different excitation channels, which can substantially
reduce the excitation probability for multiphoton transitions.)

The principal challenges associated with cw systems are the difficulty of producing
intense sources at the wavelengths required and of maintaining them in stable operation
over long periods of time. Interestingly, these technical difficulties arise due to nonlin-
ear optical phenomena that are closely related to the process of multiphoton excitation.
Deep-ultraviolet lasers are usually made by second harmonic generation (or other non-
linear frequency conversion) of a source with longer wavelength. The efficiency of the
frequency mixing process that produces the ultraviolet light is thus a nonlinear function of
the intensity at the fundamental wavelength, much as multiphoton absorption is a nonlinear
function of the optical intensity at the excitation wavelength. In both cases, the intensity
parameter Ĩ characterizing the strength of the interaction is much greater than the intensity
available from currently existing cw light sources. Therefore the achievable ultraviolet in-
tensity scales as (I/Ĩ)n, where n ≥ 2 and I � Ĩ is the intensity of the long-wavelength
pump laser. For these reasons, efficient production of cw ultraviolet laser light typically
relies on resonant cavity enhancement to achieve a significantly higher fundamental inten-
sity than is available directly from output of the source laser.20 The mixing cavity must be
actively stabilized against drift, temperature and humidity regulated, and optimized for the
particular frequency desired.

Optical damage mechanisms at ultraviolet wavelengths are also dominated by nonlin-
ear processes at the cw laser powers that concern us. In particular, for the wavelength
region around 250 nm, conventional optical media – including quartz, fused silica, other
lens glasses, and nonlinear crystals such as BBO – become degraded over time by pho-
tochemical reactions at the surface where the light enters, and by photorefractive damage
and nucleation of color centers in the bulk. Since this damage is apparently irreversible
(although it can be somewhat prevented or mitigated by certain annealing procedures [46]
or hydrogen-loading [47]), many optical elements become consumable components of the

20Specially designed elements such as periodically poled conversion crystals can also be employed to
increase the total conversion efficiency at low intensities, removing the need for a cavity.
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Single-Photon Two-Photon

State: 1P1
2[1/2]1

3P1
2[3/2]1

3D2
2[5/2]2

Atom

He 58.4 nm 59.1 nm 107 nm
Be 235 nm 455 nm 322 nm
Ne 73.6 nm 74.4 nm 133 nm
Mg 285 nm 457 nm 417 nm
Ar 105 nm 107 nm 189 nm
Ca 423 nm 657 nm 983 nm
Zn 214 nm 308 nm 317 nm
Kr 116 nm 124 nm 217 nm
Sr 461 nm 689 nm 1098 nm
Cd 229 nm 326 nm 336 nm
Xe 130 nm 147 nm 256 nm
Ba 554 nm 791 nm 2170 nm
Yb 399 nm 556 nm 808 nm
Hg 185 nm 254 nm 280 nm
Rn 145 nm 179 nm 300 nm
Ra 483 nm 714 nm 1429 nm

Table 1.2: Wavelengths for low-energy optical transitions from a 1S0 ground state to se-
lected excited states [3]. Note that the “spin forbidden” 1S0 → 3P1,

3D2 transitions are
strongly suppressed in light atoms; they are shown to illustrate the scaling of excitation
wavelength with atomic number. In practice a 1D2 level exists at a similar energy above
the ground state, and this could be used instead for multiphoton magnetometry with light
atoms. For the cases of Sr, Ba, and Ra it would probably be more convenient to choose a
higher electronic level for multiphoton excitation.

system and must be regularly monitored for deterioration.
In chapter 3 we present studies of cw optical pumping and two-photon excitation in

ytterbium, where it is possible to polarize the ground state nuclear spin by direct optical
pumping on the 556 nm intercombination line. The 556 nm light is produced by second
harmonic generation with a grating-feedback diode laser as the fundamental source. The
resulting polarization is probed both by single-photon spectroscopy of the same transition,
and also (in separate experiments) by two-photon spectroscopy of the 808 nm 1S0→ 3D2

resonance. Light to drive the 808 nm transition is more easily produced with high inten-
sity, since that wavelength falls quite near to the center of the Ti:sapphire emission band.
The laser requirements for these experiments are considerably less stringent than those for
mercury or xenon, which require 254 nm or 256 nm respectively (see chapter 3).
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1.5 Atomic Species: Alkaline-Earth-Like Metals and No-
ble Gases

For optical magnetometry we are concerned with cw and pulsed laser fields interacting with
atoms that have a 1S0 ground state and finite nuclear spin, especially I = 1

2
(see table 1.1).

All such atoms are interesting magnetometer candidates, and – although they vary substan-
tially in properties such as vapor pressure, chemical reactivity, and the optical wavelengths
for their strongest electronic transitions – share a number of key features in their electronic
and hyperfine structure. The relevant E1 wavelengths are predominantly shorter than those
commonly used for spectroscopy of alkali metals (see table 1.2), but some atoms in this set
– notably, ytterbium – have single- or two-photon transitions at relatively convenient laser
frequencies. Since their atom-light interactions are essentially the same as in the noble
gases, the alkaline-earth-like atoms provide a natural starting place for the development of
multiphoton nuclear spin magnetometry. (Indeed they are also a natural first step beyond
the alkali metals, as evidenced by their relative popularity in laser-cooling and trapping
experiments, and in the early literature on optical pumping and spectroscopy.)

In fact, deep-ultraviolet E1 transitions are also available in this restricted class of atoms,
at wavelengths very close to those required for two-photon excitation of the heavier noble
gases. In particular, the mercury intercombination line at 253.7 nm lies within 3 nm of both
the xenon 1S0→ 2[5/2]2 resonance at 256.0 nm, and a radon resonance between the same
spectroscopic terms at 250.8 nm. Lasers developed for mercury spectroscopy (see [48–50]
and section 3.5) can therefore be applied with few or no modifications to the problem of
two-photon magnetometry in the noble gases, with the result that laser development and
magnetometer optimization are substantially decoupled. A best-case scenario for demon-
strating optical magnetometry with noble gas nuclear spins is to combine two technologies
that have already been separately proven in analogous systems: high-power lasers at wave-
lengths shorter than 300 nm, and two-photon excitation as a means of detecting nuclear
spin polarization.

The excitation wavelengths for noble gases are uniformly shorter than those for the
alkaline-earth-like atoms. This accounts for the practical difficulty associated with polar-
izing their nuclear spins, since light sources capable of efficient direct optical pumping at
such extreme wavelengths are not presently available. Moreover, the wavelengths for E1
transitions out of the ground state all lie in the vacuum ultraviolet. This difficulty, spe-
cific to noble gas magnetometry, is removed in mercury and ytterbium by the possibility
to polarize their nuclear spins with direct E1 optical pumping. The existing experimental
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techniques for polarizing noble gas nuclear spins are relatively indirect and inefficient by
comparison, and studies of nuclear spin polarization and two-photon excitation are consid-
erably simplified by the elimination of the complex apparatus required for spin-exchange
or metastability-exchange optical pumping.

(a) electronic structure (b) including nuclear spin, F=J+ 1
2

Figure 1.5: Some low-lying electronic excited states labeled by their spectroscopic terms,
in alkaline-earth-like atoms. The states are labeled as for pure LS-coupling, but in heav-
ier atoms spin-orbit mixing of the pure LS-eigenstates allows intercombination transitions
such as the green arrow in (a). For Yb the shown transitions occur at wavelengths 399nm
(blue), 556nm (green), and 808nm (red; two-photon). An isotope with I= 1

2
such as 171Yb

is assumed for (b), and the same two-photon transition is shown with hyperfine and Zee-
man structure included. The upper hyperfine level F ′′= 5

2
(shown in gray) is assumed to lie

outside the bandwidth of the optical field; neither of the intermediate levels is resonantly
excited. In atoms with this electronic structure, the most convenient wavelengths for de-
tection of laser-induced fluorescence usually turn out to be the same ones that are used
for direct optical pumping (e.g., 556nm in ytterbium). As discussed below, this produces
background noise that is avoidable in the noble gases.

Excited electronic eigenstates of the lighter two-electron atoms are well described by
LS (Russell-Saunders) coupling, and may be classified by spin multiplicity as either singlet
or triplet. This is characteristic of two-electron atoms more generally (including helium),
whose 1S0 ground states arise from a ns2 electron configuration rather than the np6 of the
heavier noble gases. For pure LS coupling, E1 transitions cannot connect states of different
spin multiplicity since the electric dipole operator acts on only on the spatial component of
the electronic wavefunction. Transitions between levels of the same multiplicity follow the
usual selection rules, and the lowest-energy E1 transition is usually from the ground state
to a low-lying 1P1 state (see table 1.2 and figure 1.5).

In the heavier atoms, spin-orbit coupling becomes significant in comparison to the elec-
trostatic interaction between electrons, with the result that the (total) electronic angular
momentum L and spin angular momentum S are no longer good quantum numbers. In
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cases where spin-orbit coupling is not too strong, the notation of LS coupling is often
still used, with the understanding that due to spin-orbit mixing the LS eigenstates are not
truly orthogonal. In this situation (which applies to ytterbium and mercury), E1 transitions
between states of differing multiplicity do occur, due to the nominal admixture of singlet
states into triplets and vice versa. The strong 1S0 − 1P1 transition occurs as in the lighter
species, but it is accompanied by a weaker “spin forbidden” or “intercombination” tran-
sition from the ground state to a 3P1 level – which is invariably lower in energy than the
“allowed” singlet-singlet transition. The strength of the intercombination transition (or the
radiative linewidth of the 3P1 level) is an indication of the degree of breakdown of LS cou-
pling (or equivalently, the strength of the spin-orbit interaction), and typically grows with
atomic number. In similar fashion, the 3D manifold couples both to the 3P3,2,1 and 1P1 levels
by single-photon E1 transitions, and to the 1S0 ground state (and other states of the same
parity) by two-photon E1 transitions in which both singlet and triplet intermediate levels
contribute to the excitation.

All angular momentum in the ground state is due to nuclear spin, with the result that a
magnetometer based on ground state spin precession relies on the hyperfine interaction to
mix eigenstates of I and J . This situation is similar to the spin-orbit mixing discussed in the
previous paragraphs, since again the electric dipole operator does not act directly on spin
wavefunctions. In the limit where the hyperfine interaction is weak enough to be neglected
entirely (or the atom-field interaction time is significantly less than the hyperfine period),
optical excitation based on E1 transitions is insensitive to the nuclear spin dynamics. We
therefore require a method of spectroscopy that is sensitive to the excited state hyperfine
structure, even if that structure is “finer” than the overall bandwidth of the probe field. Of
course, if the laser bandwidth is small compared to the hyperfine splitting then it is possible
to drive only one F = 1

2
→ F ′= m

2
transition, where the precise value of m = 0,±1,±2, ...

depends on the number of photons and on angular momentum selection rules. This is the
situation with narrow linewidth cw lasers, which will occupy us for the remainder of the
chapter. Chapter 4 discusses methods of studying nuclear spin dynamics when the probe
laser’s bandwidth exceeds the excited state hyperfine splitting.

1.6 Permanent Electric Dipole Moments (EDMs)

One of several open “challenges” to the Standard Model concerns the origin and strength
of CP -violating interactions in the early universe; known sources of CP -violation do not
adequately account for the observed cosmological predominance of matter over antimatter.
One can search for a low-energy signature of yet unknown interactions that may resolve
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this situation by measuring the amplitude of P - and T -violating polarization moments in
particles, nuclei, and atoms. The prototypical example of such a polarization moment
is the permanent electric dipole moment (EDM), which for reasons of symmetry must
lie parallel or antiparallel to the total angular momentum (and therefore also to any finite
magnetic dipole moment). It is therefore in principle simple to search for an EDM: one
simply measures the precession frequency of a magnetic moment in applied electric and
magnetic fields, looking for a shift of the frequency that correlates linearly with the electric
field amplitude but is independent of the magnetic field. In practice, of course, EDM
experiments are an exercise in the detailed management of systematic errors.

1.6.1 Generic Experimental Protocol

A particle with an EDM dCPV experiences an energy shift −dCPV · E and a torque
dCPV × E when exposed to an external electric field E. The interaction Hamiltonian,
when a magnetic field B is also present, is

H = −F · (µB + dCPVE) , (1.20)

where F is the total angular momentum operator. The magnetic moment µ = µF and
the EDM dCPV = dCPVF are both constrained to lie along F, but they have different
transformation properties under the discrete symmetry operators C (charge conjugation),
P (parity), and T (time reversal). In particular, the term involving B is even under all three
of C,P , and T – while the term involving E is odd under P and T , and therefore (assuming
CPT -invariance) must also be odd under CP .

The directions of the vector fields B and E can be reversed in an experiment, such that
the absolute values of the magnetic and electric energy terms must be added or subtracted.
When the experiment is repeated in two different field configurations (B and E parallel or
antiparallel), the two resulting resonance frequencies can be added or subtracted to isolate
the electric and magnetic contributions. The magnetic interaction is very well understood,
and by characterizing it with the most sensitive magnetometers that are compatible with
the experiment a bound can be placed on the magnitude of the EDM.

1.6.2 Limitations and Representative Systematics

Perhaps surprisingly, a small set of systematic effects accounts for the main limitations
in all modern EDM experiments. These include “non-reversing” magnetic fields due to
leakage currents, motional magnetic fields due to the v

c
× E term arising from relativity,
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and a geometric phase associated with particle motion (typically involving an “interference
term” that couples magnetic field gradients and the motional magnetic field). The solutions
for managing these effects frequently involve characterization by magnetometry, a situa-
tion which is complicated by the stringent requirements of EDM apparatus with regard to
high voltage, magnetic and material purity, and long-term stability. New tools are clearly
needed, and this was the original motivation for pursuing two-photon optical magnetome-
try in xenon. It now appears that this may be incompatible with the on-line high voltage
requirements of the experiments in question, but off-line measurements can still provide a
wealth of information, particularly about spatial field structure and geometric phases.

A useful reference for theoretical and experimental issues relating to EDM searches
is [51]. A recent survey of the status of theory and experiment, which places an emphasis
on the joint constraints obtainable from multiple independent measurements is provided
in [15].

1.7 Outline of this Dissertation

In chapter 2, we lay the theoretical groundwork for multiphoton optical magnetometry. The
connections between cw and pulsed excitation are emphasized, in order to clearly distin-
guish their respective features and elucidate which degrees of freedom are experimentally
useful in each case. We also discuss some details of electronic pair-coupling and atomic
structure, which are particularly important for heavy atoms where LS-coupling fails due
to spin-orbit term mixing. Finally, we examine practical magnetometry schemes in more
detail, estimate the ultimate sensitivity in some illustrative cases, and list some extant chal-
lenges in theoretical approaches to these issues.

In chapter 3 we present the details and results of experiments using cw lasers for optical
pumping and probing of nuclear spins. An ytterbium atomic beam in vacuum was used for
both single- and two-photon excitation, as a test system for optical readout of optically
polarized nuclear spins in a 1S0 ground state. Vapor cell measurements involving mercury
and xenon are also presented; unlike ytterbium, these require lasers at deep ultraviolet
wavelengths – as do many species of interest listed in table 1.1.

Chapter 4 turns the focus to pulsed lasers, and reports further studies using the same
ytterbium atomic beam system. Two-photon excitation of ytterbium is demonstrated with
both picosecond and femtosecond pulses, although no results showing sensitivity to nuclear
spin polarization are yet available. The scaling of signal with pulse width is analyzed, and
reveals some surprising features that may indicate room for improvement in the laser sys-
tem. The picosecond laser system was also used to drive two-photon excitation of rubidium
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in a vapor cell, in a configuration substantially similar to that envisioned for xenon. Laser
developments toward the wavelengths required for xenon and radon are presented, and a
scheme for controlling the absolute excitation frequency in ytterbium is proposed.

Chapter 5 discusses some work related to an ongoing measurement of the 129Xe nuclear
EDM, one of the many precision measurements reliant on polarized nuclear spins. A novel
approach to vapor cell bonding developed for this experiment also promises to simplify
the task of inserting deep ultraviolet excitation light into vapor cells without prohibitive
losses. Transverse relaxation times in excess of 4000 s are demonstrated for both 129Xe
and 3He, simultaneously, in a cell with silicon end caps bonded to an aluminosilicate glass
cylinder. We also discuss prospective applications of spatially resolved multiphoton mag-
netometry using 129Xe, to mitigate systematic errors associated with geometric phases in
EDM searches.

Chapter 6 enumerates some promising directions for future research, which while out-
side the scope of experiments reported in this thesis, are nevertheless worthy of consid-
eration. These include the possibilities of magnetometry based on polarization rotation,
multiphoton magnetometry with n>2, direct spin-polarization by TPOP/MPOP, details of
a search for a nuclear EDM in Rn isotopes which will rely on two-photon optical magne-
tometry, and other (perhaps more ambitious) ideas.

Chapter 7 summarizes the content of this dissertation, and mentions the next steps re-
quired to improve upon the experiments reported here.

The appendices include some additional derivations and calculations; results derived in
them are used elsewhere, and referred to in the main text.
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CHAPTER 2

Theory of Multiphoton Excitation

This chapter explores results from the theory of multiphoton excitation that are relevant
for optical magnetometry, and discusses some additional physics that impacts magnetome-
ter sensitivity and systematic errors. A brief survey of the irreducible tensor formalism
and polarization moments is presented first in section 2.1, including some consideration
of nomenclature and phase conventions. This is followed by explicit calculations of two-
photon excitation amplitudes for continuous wave (cw) laser fields in section 2.2, in which
it is assumed that the intermediate states are far from resonance so that their amplitudes can
be adiabatically eliminated from the calculation. (An analogous treatment using the den-
sity matrix formalism can be found in references [52, 53].) Angular momentum coupling,
selection rules for two-photon transitions, multiphoton absorption, and paramagnetic rota-
tion are then briefly discussed; this completes the theoretical apparatus required for model
calculations and analysis relating to optical interrogation of nuclear spins using cw lasers
and multiphoton transitions. The data presented in chapter 3 are discussed and analyzed
entirely within this framework.

The following sections discuss pulsed excitation (section 2.3), figures of merit for mag-
netometer sensitivity (sections 2.4 and 2.5), and a class of systematic effects arising from
geometric phases (section 2.6); each of these subjects has an extensive literature of its own,
and we only present a brief summary of their most relevant features. Pulsed excitation
is considered again in section 4.1, and the remainder of chapter 4 reports on experiments
using pulsed lasers (whose interpretation relies upon these results). The magnetometer
sensitivity estimates derived in sections 2.4 and 2.5 can be applied to either pulsed or cw
excitation. The discussion of geometric phases in section 2.6 is somewhat general, and we
consider how such phases can produce systematic effects in experimental searches for a
permanent electric dipole moment (EDM).

Some results associated with the dynamics of a two-level quantum system in a time-
harmonic potential are presented in appendix A; these are used freely throughout this chap-
ter. The closely related “Ramsey method” of interference by separated oscillatory fields is
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discussed in appendix B. A recurring theme is that the spectrum of an ideal modelocked
laser can be considered from two complementary points of view: a periodic time-domain
envelope function modulating a single-frequency carrier wave, or a superposition of cw
modes with fixed relative phases. This, together with the close analogy connecting optical
excitation of effective two-level systems and radio frequency (RF) excitation in classical
NMR, is a powerful tool for comparing results in qualitatively different experiments.

2.1 Notation and Definitions

Several different conventions exist for the nomenclature and definitions that specify opti-
cal polarization, transition matrix elements, and angular momentum coupling coefficients.
This section clarifies which conventions are used here, and illustrates some basic results
associated with complex conjugation and transitions involving circularly polarized light.
More comprehensive presentations can be found in textbooks such as [36, 54–58], as well
as the classic references [59, 60].

We will usually express optical electric fields in the form,

E(r, t) =
1

2
ε̂E(r, t)ei(k·r−ωt+φ) + c.c. , (2.1)

where E is a complex function of position and time whose variations are slow in comparison
with the complex exponential phase factor. The polarization vector ε̂ may also be complex,
and we can express it in either a Cartesian basis or in terms of irreducible (spherical) tensor
components:

ε̂ = εxx̂ + εyŷ + εzẑ (2.2)

=
1∑

q=−1

(−1)qε−qêq , (2.3)

where the (covariant) spherical components and basis vectors are related to the Cartesian
ones by

ε±1 = ∓ 1√
2

(εx ± iεy), ε0 = εz (2.4)

ê±1 = ∓ 1√
2

(x̂± iŷ), ê0 = ẑ . (2.5)
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This can be done quite generally for any Cartesian vector a, and it is convenient to define
contravariant components with raised indices by

aq = (−1)qa−q , (2.6)

such that we can write the scalar product of two vectors a and b as

a · b = aqbq = aqb
q , (2.7)

where repeated indices are implicitly summed. We can also write any vector in terms of
the spherical basis vectors êq as

a = aqê
q = aqêq , (2.8)

noting that complex conjugation transforms the covariant basis vectors into their contravari-
ant counterparts, e.g. (êq)

∗ = êq. It is therefore important to carefully distinguish between
the components (aq)

∗ and (a∗)q, e.g. in the second term on the right-hand side of equation
2.1.

We can similarly express an arbitrary tensor T k of rank k in terms of irreducible com-
ponents T kq , where q takes on the 2k + 1 values from −k to k. The matrix element of a
particular irreducible component can be broken into “physical” and “geometrical” factors
by the Wigner-Eckart theorem:

〈
α′j′m′

∣∣T kq ∣∣αjm〉 = (−1)j
′−m′

(
j′ k j

−m′ q m

)〈
α′j′‖T k‖αj

〉
, (2.9)

where m and m′ are respectively the projections of the angular momenta j and j′ along the
quantization axis, and α, α′ is a collective index representing any other quantum numbers
required to completely specify the states. The quantity

〈
α′j′‖T k‖αj

〉
is a reduced matrix

element, which is independent of q. We can consider it to be a property of the physical
observable associated with T k, whereas the geometry-dependent part (relating to angular
momentum coupling and the orientation of the quantization axis) is contained in the 3j

symbol (
j1 j2 J

m1 m2 −M

)
=

(−1)j1−j2+M

√
2J + 1

〈j1m1, j2m2|JM〉 . (2.10)

In this expression, 〈j1m1, j2m2|JM〉 is the Clebsch-Gordan coefficient for coupling eigen-
states of j21, j1z, j

2
2, j2z into eigenstates of J2 = (j1 + j2)2 and Jz. We will also make use of

the 6j symbol,
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{
j1 j2 j12

j3 J j13

}
=

(−1)j1+j2+j3+j√
(2j12 + 1)(2j23 + 1)

〈j12j3J |j1j23J〉 , (2.11)

where the three angular momenta j1, j2, j3 are coupled to obtain J in two possible ways:

(j1 + j2) + j3 ≡ j12 + j3 (2.12)

j1 + (j2 + j3) ≡ j1 + j23 . (2.13)

The expansion coefficients

〈j12j3J |j1j23J〉 = 〈j12j3J
′M ′|j1j23JM〉 (2.14)

are simply the scalar products of eigenfunctions in these two alternative coupling schemes,
with the notation simplified since the product vanishes due to orthogonality unless J = J ′

and M = M ′.
For optical magnetometry, we are frequently concerned with transitions between spe-

cific magnetic sublevels of the eigenstates of total atomic angular momentum. Since the
electric dipole operator does not act directly on spin angular momenta, in the LS-coupling
scheme this usually means a transition from

|LSJIFmF 〉 → |L′SJ ′IF ′m′F 〉 , (2.15)

where L is the total electronic orbital angular momentum, S is the total electronic spin,
J = L + S is the total electronic angular momentum, I is the nuclear spin, and F = I + J

is the total atomic angular momentum. When a tensor operator T k commutes with j2 but
not j1, the reduced matrix element can be further simplified:

〈
j′1j2J

′‖T k‖j1j2J
〉

= (−1)j
′
1+j2+J+k

√
(2J + 1)(2J ′ + 1)

{
j′1 J ′ j2

J j1 k

}〈
j′1‖T k‖j1

〉
. (2.16)

By repeated use of equation 2.16 and the Wigner-Eckart theorem, we can express a general
matrix element of T kq in terms of angular momentum coupling coefficients and reduced
matrix elements. A typical example of this is
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〈
L′SJ ′IF ′m′F

∣∣T kq ∣∣LSJIFmF

〉
= (−1)F

′−m′f

(
F ′ k F

−m′F q m

)

× (−1)J
′+I+F+k

√
(2F + 1)(2F ′ + 1)

{
J ′ F ′ I

F J k

}

× (−1)L
′+S+J+k

√
(2J + 1)(2J ′ + 1)

{
L′ J ′ S

J L k

}〈
L′‖T k‖L

〉
,

(2.17)

such that with knowledge of
〈
L′‖T k‖L

〉
we can compute the matrix element for any set

of quantum numbers and any component T kq . Conversely, if the left-hand side is known for
some value of q, then we can infer the value of the reduced matrix element.

We should be careful to note that the reduced matrix element
〈
j1‖T k‖j′1

〉
still depends

on position coordinates, and the purely radial factor 〈r〉 will often be used to account for
this in expressions where the angular part of

〈
j1‖T k‖j′1

〉
is evaluated explicitly (as in

equation 1.11). Often the reduced matrix elements can be evaluated up to this radial factor
by making use of the correspondence between spherical tensor components of rank k and
the spherical harmonics Y k

m, which have identical transformation properties.
In particular, the matrix elements of the spherical harmonics Y 1

m are very useful since
the position vector r = rqêq can be expressed in terms of them:

rq = r

√
4π

3
Y 1
q . (2.18)

The matrix element
〈
L′‖Y k‖L

〉
is easily evaluated via the Wigner-Eckart theorem, with

the result

〈
L′‖Y k‖L

〉
= (−1)L

′

√
(2L′ + 1)(2k + 1)(2L+ 1)

4π

(
L′ k L

0 0 0

)
, (2.19)

so that

〈L′‖r‖L〉 = 〈r〉
√

4π

3

〈
L′‖Y 1‖L

〉
, (2.20)

where now only 〈r〉 is undetermined.
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The irreducible components of tensor products are straightforwardly related to the irre-
ducible components of the original tensors. We are mainly concerned with vector operators
such as the atomic electric dipole operator

d = −e
∑
i

ri (2.21)

(where the sum ranges over atomic electrons), and products of vectors such as the two-
photon transition operator

M =
∑
k,j,j′

d · ε̂(j′) |k〉〈k|
2∆kg,j

d · ε̂(j) , (2.22)

where ∆kg,j = ωkg − ωj is the intermediate detuning for the jth field and the state repre-
sented by |k〉.

For E1 transitions between states α and β, we can force the matrix elements

〈α |d · ε̂|β〉=−e 〈α |rqεq|β〉 (2.23)

to be real for a given polarization ε̂ since the absolute phase of each eigenstate is physically
meaningless. The relative phase between different eigenstates can therefore be chosen to
cancel the argument of d · ε̂. Once this relative phase has been fixed for a given polarization
ε̂, the matrix elements corresponding to other polarizations will in general be complex.
Therefore when all optical fields under consideration have the same polarization, we can
take the relevant matrix elements of the dipole operator to be real without loss of generality.

2.1.1 Expansions of the Density Operator

The density operator ρ is commonly represented by its matrix elements ρij between atomic
eigenstates i and j. Its most general time evolution including dissipation is described by
the Lindblad master equation [61],

ρ̇ = − i
~

[H, ρ]−
M∑
k=0

(
LkρL

†
k −

1

2
ρL†kLk −

1

2
L†kLkρ

)
, (2.24)

where the dimension N of the Hilbert space is finite, and M < N2. The operators Lm
are a linear basis for operators on the Hilbert space; the physical interpretation is that they
create and annihilate quanta, thereby inducing transitions between different states. The
first term in parentheses may be viewed as a transition operator, while the second two
ensure correct normalization when no transition occurs. For our our purposes it is usually

36



adequate to consider only unitary time-evolution, in which case equation 2.24 simplifies to
the Liouville equation:

ρ̇ = − i
~

[H, ρ]− 1

2
{Γ, ρ}+ Λ , (2.25)

where the total Hamiltonian H = H0 + V consists of the unperturbed Hamiltonian H0

and a perturbing interaction V . The relaxation operator Γ can be parameterized some-
what generally, but is usually written in terms of phenomenological decay rates (including
spontaneous emission). The repopulation operator Λ includes contributions from cascade
decays involving other atomic eigenstates, atoms entering the interaction region, etc.

When the representation ρij = 〈i| ρ |j〉 is used, equations of motion are obtained in
terms of the matrix elements of the other operators in equation 2.25 (e.g., Γij). We can
also represent the density operator in terms of irreducible tensors, for which we follow
normalization condition

Tr
[
T kq T

k′†
q′

]
= δkk′δqq′ (2.26)

and phase convention

T k†q = (−1)qT k−q = T kq . (2.27)

of [36]. The density matrix for an atomic state with total angular momentum F has (2F +

1)2 independent degrees of freedom, and coupling F to F we obtain a direct sum of tensors
up to rank 2F :

F ⊗ F = T 0 ⊕ T 1 ⊕ · · · ⊕ T 2F . (2.28)

Thus, we can expand ρ over the set of T kq with 0 ≤ k ≤ 2F :

ρ =
2F∑
k=0

k∑
q=−k

ρkqT kq . (2.29)

The expansion coefficients ρkq are known as state multipoles or polarization moments, and
are related to the density matrix elements ρij by

ρkq =
F∑

m,m′=−F

(−1)F−m
′−q√2k + 1

(
F F k

m −m′ −q

)
ρmm′ . (2.30)

The low-rank polarization moments are commonly referred to as monopole (ρ0), dipole
(ρ1), quadrupole (ρ2), etc. as in other multipole expansions. Unfortunately the terms “po-
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larization” and “polarized state” are less well defined than “unpolarized” or “unpolarized
state”, which refer to a situation in which ρk vanishes for all k > 0. Following this us-
age, “polarized state” can mean a situation where any higher multipole is nonvanishing,
but is also frequently used specifically to indicate a nonvanishing dipole moment. Where
this usage may cause confusion, we will refer to the dipole moment as “orientation” and
the quadrupole moment as “alignment”, but it should be noted that other conventions ex-
ist in the literature (e.g., all odd multipoles denoted by “alignment” and all even ones by
“orientation”).

There is a correspondence between the nomenclature for polarization moments and the
classical terminology of nuclear magnetic resonance (NMR). When the Zeeman sublevel
populations ρmm′ are not all equal, ρk0 6= 0 for some k > 0 and the ensemble is said
to be longitudinally polarized. In the case of dipole orientation, we find that the macro-
scopic polarization (dipole moment per unit volume) has a nonzero component along the
quantization axis,

ρ10 ∝ 〈Fz〉 . (2.31)

When ρmm′ 6= 0 for some m 6= m′, there are coherences between different Zeeman sub-
levels and ρkq 6= 0 for some q 6= 0. An ensemble in this situation is traditionally referred
to as having transverse polarization, since it corresponds to cases where the instantaneous
macroscopic polarization vector has components orthogonal to the quantization axis. We
follow [62] and [17] in referring to quadrupole polarization

ρ20 ∝
〈
3F 2

z − F2
〉

(2.32)

as “longitudinal alignment”.
Alternatively, ρ can be expanded in a power series by treating the interaction V with

perturbation theory:

ρ =
∞∑
n=0

ρ(n)V n , (2.33)

where each term corresponds to an nth-order interaction. We are concerned with light-
matter interactions in which the atomic medium is (electrically) polarized by an optical
field

P = n̄Tr[ρd] , (2.34)

where P is the polarization of the medium, n̄ in the number density of atoms, and d is
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the atomic electric dipole operator. The perturbation of interest in this case is the electric
dipole interaction, V = −d·E. Nonlinear optics most broadly includes situations where the
optical properties of the atomic ensemble are modified by an optical field; these correspond
to terms in the perturbation expansion with n ≥ 2.

2.2 Equations of Motion, Approximations, and Analytic
Solutions

Although all dynamics of interest can be captured in a theoretical model based on the den-
sity matrix, we begin by discussing single-beam two-photon absorption in an amplitude
picture. This treatment emphasizes adiabatic elimination of the intermediate states. When
those states are far from resonance, the process of two-photon excitation is formally an
effective two-level problem. This allows us to rapidly generalize familiar results (see ap-
pendices A and B) for application to two-photon excitation. The related problems involving
multiple fields, time- and space-dependent field amplitudes, ionization, and the density ma-
trix are discussed later in this chapter.

The next section solves the equations of motion for a single optical field exciting two-
photon transitions in a multilevel atom. See [55] for a similar discussion, in which it is
assumed that two fields are present but neither one can drive the two-photon transition inde-
pendently. In section 2.2.2 we modify this treatment to accommodate two-field two-photon
excitation in the case where each field can drive the two-photon transition independently.
Alternative treatments are widely available in the literature, e.g. in [26, 52, 53, 57, 63–65].

2.2.1 Single Beam, CW Two-Photon Excitation

Consider an atom with a ground state represented by |g〉 and an excited state represented
by |e〉, which have the same parity. Let there also be a set of intermediate states represented
by {|k〉}, which have the opposite parity and are coupled to each of |g〉 and |e〉 by single-
photon electric dipole (E1) transitions. We will work in the interaction picture, where an
arbitrary ket |ψ〉 can be expressed as a superposition

|ψ〉 =
∑
m

cm(t)e−iωmt |m〉 , (2.35)

in which {|m〉} are eigenstates of the atomic Hamiltonian in the absence of a radiation
field:

39



H0 |m〉 = ~ωm |m〉 . (2.36)

We now include an interaction V in the Hamiltonian due to an optical electric field with
amplitude E , frequency ω, and polarization ε,

E =
1

2
ε
[
Eei(k·r−ωt) + c.c.

]
, (2.37)

which can drive the E1 transitions g ↔ k and k↔ e. Note that g ↔ e is forbidden as a
single-photon E1 process, since the dipole operator has odd parity. The time-dependent
Schrödinger equation applied to equation 2.35 gives the equations of motion for the state
amplitudes cm:

i~ċm =
∑
n

eiωmntVmncn , (2.38)

where ωmn=ωm−ωn and Vmn = 〈m|V |n〉. In the dipole approximation, the operator for
the atom-field interaction is V = −d · E, and for a given polarization we can choose the
relative phases of the atomic eigenstates such that the matrix elements 〈m|d ·ε |n〉 are real.
Thus we can write the matrix elements of V as

Vmn =
~
2

Ωmne
i(k·r−ωt) + c.c. , (2.39)

where

Ωmn = −~−1 〈m|d · ε |n〉 E (2.40)

is the Rabi frequency, which expresses the strength of the field-induced coupling between
states m and n in frequency units.

For now we also suppose that the atom is located at the origin, so that r = 0. In this
case, the amplitude equations of motion are

ċm = − i
2

∑
n

(
Ωmne

i(ωmn−ω)t + Ω∗mne
i(ωmn+ωt)

)
cn . (2.41)

We will use the letters m,n to refer to an arbitrary atomic eigenstate, and k for the interme-
diate states that contribute to two-photon excitation; note that Vgm=Vem=0 if |m〉 /∈ {|k〉}.
Explicitly, for the ground state we have

ċg = − i
2

∑
k

(
Ωgke

i(ωgk−ω)t + Ω∗gke
i(ωgk+ω)t

)
ck , (2.42)
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and ċe is given by (g ↔ e). For the intermediate states,

ċk = − i
2

[
Ωkge

i(ωkg−ω)t + Ω∗kge
i(ωkg+ω)t

]
cg + (g ↔ e) . (2.43)

Treating the intermediate levels within first-order perturbation theory, we obtain their am-
plitudes by integrating equation 2.43 by parts. In doing so, we assume that the field is
turned on slowly with respect to the intermediate detunings ωkg ±ω and ωke±ω, such that
the remaining integral can be neglected. The result is

ck(t) = −1

2

[
Ωkge

i(ωkg−ω)t

ωkg − ω
+

Ω∗kge
i(ωkg+ω)t

ωkg + ω

]
cg + (g ↔ e) , (2.44)

which we can now substitute into equation 2.42 to obtain

ċg =
i

4

∑
k

(
ΩgkΩ

∗
kg

ωkg + ω
+

Ω∗gkΩkg

ωkg − ω

)
cg +

i

4

(∑
k

Ω∗gkΩ
∗
ke

ωke + ω

)
e−iδtce . (2.45)

In simplifying this result we have kept only the “slowly-varying” terms that change little in
an optical period, and defined the two-photon detuning δ = ωeg− 2ω. (This corresponds to
a rotating wave approximation; see appendix A. It is important to introduce this approxima-
tion after substituting for the amplitudes ck, since the intermediate detunings are large and
the “counter-rotating” terms also contribute substantially to the intermediate amplitudes.
The rotating wave approximation and the two-level approximation typically enter at the
same order of magnitude.) The corresponding equation for ce is

ċe =
i

4

(∑
k

ΩekΩkg

ωkg − ω

)
eiδtcg +

i

4

∑
k

(
ΩekΩ

∗
ke

ωke + ω
+

Ω∗ekΩke

ωke − ω

)
ce . (2.46)

Evidently we can absorb the dependence on intermediate levels into the auxiliary quantities

sg ≡ −
1

4

∑
k

(
|Ωgk|2

ωkg + ω
+
|Ωgk|2

ωkg − ω

)
(2.47)

se ≡ −
1

4

∑
k

(
|Ωek|2

ωke + ω
+
|Ωek|2

ωke − ω

)
, (2.48)

and
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Ωg ≡ −
1

2

∑
k

ΩekΩkg

ωkg − ω
(2.49)

Ω∗e ≡ −
1

2

∑
k

Ω∗gkΩ
∗
ke

ωke + ω
, (2.50)

to write the equations of motion in the form

ċg = −isgcg − i
Ω∗e
2
e−iδtce (2.51)

ċe = −iΩg

2
eiδtcg − isece . (2.52)

We now have the equations of motion for an effective two-level system, where the quantities
~sg,e represent energy shifts due to the light field (this is the two-photon light shift or AC

Stark shift), and Ωg,e are two-photon Rabi frequencies. These coupled first-order equations
can be combined to separate the variables cg and ce, resulting in two second-order equations
with constant coefficients:

c̈g + i(sg + se + δ)ċg +

(
ΩgΩ

∗
e

4
− sgse − δsg

)
cg = 0 (2.53)

c̈e + i(sg + se − δ)ċe +

(
ΩgΩ

∗
e

4
− sgse + δse

)
ce = 0 . (2.54)

Note that these equations transform into each other under the combination of (g ↔ e) and
δ → −δ. The full solution is most concisely expressed in terms of the effective two-photon
Rabi frequency,

Ω =
√

(δ − sg + se)2 + ΩgΩ∗e, (2.55)

and the effective detuning, δ̃ ≡ δ − sg + se,

cg(t) = e
i
2

(δ̃+2sg)t

[(
cos

Ωt

2
+ i

δ̃

Ω
sin

Ωt

2

)
cg(0)− iΩ

∗
e

Ω
sin

Ωt

2
ce(0)

]
(2.56)

ce(t) = e−
i
2

(δ̃−2se)t

[
−iΩg

Ω
sin

Ωt

2
cg(0) +

(
cos

Ωt

2
− i δ̃

Ω
sin

Ωt

2

)
ce(0)

]
. (2.57)
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The solutions are expressed in terms of the amplitudes at t=0; they have exactly the same
structure as the corresponding solutions for the usual two-level problem. If we assume that
all population is initially in g, i.e. cm(0) = δmg, then the probabilities take a particularly
simple form:

|cg|2 = cos2 Ωt

2
+
δ̃2

Ω2
sin2 Ωt

2
(2.58)

|ce|2 =
|Ωg|2

Ω2
sin2 Ωt

2
. (2.59)

Note that although we have solved the equations of motion in the interaction picture, the
populations are the same as in the Schrödinger picture.

2.2.2 Two Beam, CW Two-Photon Excitation

In order to highlight certain aspects of the general problem, we will assume an arbitrary
superposition of monochromatic plane wave fields and derive results for the specific case
of two independent fields at the end of this section. The atomic structure is the same as in
the previous section, but the electric field is now

E =
1

2

∑
j

ε(j)E (j)ei(kj ·r−ωjt+φj) + c.c , (2.60)

where we have also allowed each term in the sum to have a constant phase offset φj . The
Rabi frequencies and matrix elements of V now involve the field index j:

Ω(j)
mn = −~−1 〈m|d · ε(j) |n〉 E (j)eiφj (2.61)

Vmn =
~
2

∑
j

Ω(j)
mne

i(kj ·r−ωjt) + c.c. , (2.62)

where it is now not in general possible to choose relative phases such that all of the dipole
matrix elements are real. The derivation of intermediate state amplitudes proceeds in anal-
ogy to the previous section, where each equation now involves a sum over j. The result
is

ck(t) = −1

2

∑
j

[
Ω

(j)
kg e

i(ωkg−ωj)t

ωkg − ωj
+

Ω
(j)∗
kg e

i(ωkg+ωj)t

ωkg + ωj

]
cg + (g ↔ e) , (2.63)
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where we have now assumed that each field is turned on slowly in comparison to its re-
spective detunings ωkg±ωj and ωek±ωj . Substituting this amplitude into the equations of
motion for cg and ce, we find

ċg =
i

4

∑
j,j′

∑
k

[(
Ω

(j)
kg Ω

(j′)∗
gk

ωkg − ωj
ei(−ωj+ωj′ )t +

Ω
(j)∗
kg Ω

(j′)
gk

ωkg + ωj
ei(ωj−ωj′ )t

)
cg

+

(
Ω

(j)∗
ke Ω

(j′)∗
gk

ωke + ωj
ei(−ωeg+ωj+ωj′ )t

)
ce

]
(2.64)

ċe =
i

4

∑
j,j′

∑
k

[(
Ω

(j)
ke Ω

(j′)∗
ek

ωke − ωj
ei(−ωj+ωj′ )t +

Ω
(j)∗
ke Ω

(j′)
ek

ωke + ωj
ei(ωj−ωj′ )t

)
ce

+

(
Ω

(j)
kg Ω

(j′)
ek

ωkg − ωj
ei(ωeg−ωj−ωj′ )t

)
cg

]
, (2.65)

where rapidly varying terms have been dropped. We now define the slightly modified light
shift parameters,

s̃jj
′

g,± = −1

4

∑
k

|Ω(j)
kg Ω

(j′)∗
gk |

ωkg ± ωj
e±iΦ

jj′
g (2.66)

s̃jj
′

e,± = −1

4

∑
k

|Ω(j)
ke Ω

(j′)∗
ek |

ωke ± ωj
e±iΦ

jj′
e , (2.67)

where Ω
(j)
kg Ω

(j′)∗
gk = |Ω(j)

kg Ω
(j′)∗
gk |eiΦ

jj′
g and Ω

(j)
ke Ω

(j′)∗
ge = |Ω(j)

ke Ω
(j′)∗
ge |eiΦ

jj′
e . We similarly define

two-photon Rabi frequencies for each combination of j and j′:

Ω̃jj′

e = −1

2

Ω
(j)∗
ke Ω

(j′)∗
gk

ωke + ωj
(2.68)

Ω̃jj′

g = −1

2

Ω
(j)
kg Ω

(j′)
ek

ωkg − ωj
, (2.69)

and the detuning δjj′ = δj′j = ωeg − ωj − ωj′ . With these definitions, we again have an
effective two-level system:
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ċg = −i
∑
j,j′

(
s̃jj
′

g,−e
−iωjj′ t + s̃jj

′

g,+e
iωjj′ t

)
cg −

i

2

∑
j,j′

Ω̃jj′

e e−iδjj′ tce (2.70)

ċe = −i
∑
j,j′

(
s̃jj
′

e,−e
−iωjj′ t + s̃jj

′

e,+e
iωjj′ t

)
ce −

i

2

∑
j,j′

Ω̃jj′

g eiδjj′ tcg . (2.71)

When there are only two fields, there are two particularly useful limits where the time
dependence can be simplified. In the first case, ω1 = ω2 and we have

ċg = −i
∑
j=1,2
j′=1,2

(
sjj
′

g,− + sjj
′

g,+

)
cg −

i

2

∑
j=1,2
j′=1,2

Ω̃jj′

e e−iδtce (2.72)

ċe = −i
∑
j=1,2
j′=1,2

(
sjj
′

e,− + sjj
′

e,+

)
ce −

i

2

∑
j=1,2
j′=1,2

Ω̃jj′

g eiδtcg , (2.73)

where δ = δ12 = δ11 = δ22. In the second case, ω1 − ω2 � δ12, and we can neglect the
terms that vary as e±ω12t in what amounts to a second rotating-wave approximation:

ċg = −i
(
s12
g,− + s12

g,+ + s21
g,− + s21

g,+

)
cg −

i

2
(Ω̃12

e + Ω̃21
e )e−iδtce (2.74)

ċe = −i
(
s12
e,− + s12

e,+ + s21
e,− + s21

e,+

)
ce −

i

2
(Ω̃12

g + Ω̃21
g )eiδtcg . (2.75)

Rewriting this result with the definitions

Sg = s12
g,− + s12

g,+ + s21
g,− + s21

g,+ (2.76)

Se = s12
e,− + s12

e,+ + s21
e,− + s21

e,+ (2.77)

χg =
1

2
(Ω̃12

g + Ω̃21
g ) (2.78)

χe =
1

2
(Ω̃12

e + Ω̃21
e ) , (2.79)

we have a formal analogy with the two-level problem for one-photon excitation:

ċg = −iSgcg − iχee−iδtce (2.80)

ċe = −iSece − iχgeiδtcg . (2.81)

These results can be extended to include the effects of atomic motion and relaxation
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via the density matrix formalism. Because we have an effective two-level system, we can
simply write down the result, which is [55]

ρ̇gg + v · ∇ρgg = −iχeρeg + iχgρge + Λρee (2.82)

ρ̇ee + v · ∇ρee = −iχeρeg − iχgρge − Γeρee (2.83)

ρ̇ge + v · ∇ρge = −iχe(ρee − ρgg)− Γegρeg

+ i [δ + (k1 + k2) · v − Sg + Se] ρeg , (2.84)

where we have written the density matrix in a “field-interaction” representation that absorbs
oscillations at the optical sum frequency ω1 + ω2 into the state amplitudes, i.e.,(

cg(t)

ce(t)

)
→

(
e
i
2
δt 0

0 e−
i
2
δt

)(
cg(t)

ce(t)

)
. (2.85)

The point is that the lineshape function for the transition arises from the factor

− Γeg + i [δ + (k1 + k2) · v − Sg + Se] (2.86)

in equation 2.84 (since the dipole operator has odd parity, diagonal elements of the density
matrix cannot contribute to Tr[ρd] in equation 2.34). This depends on the sum of the wave
vectors for the two optical fields, which gives rise to a Doppler-broadened spectrum whose
characteristic width is |k1 + k2|. It is immediately apparent that in a counter-propagating
geometry where k̂1 = −k̂2, the Doppler effect is precisely canceled and we observe a
resonance whose width is the radiative linewidth Γe of the excited state, and whose center
frequency is shifted by the differential light shift Se − Sg. In the copropagating geometry
where k̂1 = k̂2, the Doppler width attains its maximal value 2|k1| and the light shift is the
same. Doppler-free multiphoton excitation is discussed in [64].

2.2.3 Angular Momentum Coupling in Two-Photon Excitation

The steady-state probability per unit time for a two-photon transition from g → e, induced
by two statistically independent optical fields is [57, 65]

P (2)
ge =

2π

~4

I1I2

4ε0c2
|Meg|2G(ω) , (2.87)

where I1 and I2 are the intensities of the two fields and G(ω) is a lineshape function that
corresponds to the density of atomic states that can couple to the field. The lineshape
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function is often taken to be a Lorentzian,

G(ω) =
Γ
2π

δ2 + Γ2

4

, (2.88)

in which the detuning δ = ωeg−ω1−ω2 is defined as before. The radiative linewidth of any
atomic state m is denoted by Γm, and Γ = Γe + Γg. The matrix element of the two-photon
transition operator M is given by

Meg =
∑
k

[〈
e
∣∣ε̂(1) · d

∣∣k〉 〈k ∣∣ε̂(1) · d
∣∣g〉

ωkg − ω1 + iΓk
2

+

〈
e
∣∣ε̂(1) · d

∣∣k〉 〈k ∣∣ε̂(2) · d
∣∣g〉

ωkg − ω2 + iΓk
2

]
+ (1↔ 2) ,

(2.89)
where again ε̂(1) and ε̂(2) are the polarization vectors of the optical fields. We have pre-
viously neglected the linewidths Γk in the resonance denominators that appear in the ex-
pression for Meg; this is a good approximation when they are small in comparison with
detunings ωkg−ω1 and ωkg−ω2, as they are for all cases considered in this dissertation.
When the detunings are additionally large in comparison with all of the fine and hyperfine
structure splittings, the projection operator

Pk =
∑
k

[
|k〉 〈k|
ωkg − ω1

+
|k〉 〈k|
ωkg − ω2

]
(2.90)

is rotationally invariant due to the sum over all possible quantum numbers [56]. In this
case the structure of angular momentum coupling arises solely due to the tensor products
(ε̂(i) · d)(ε̂(j) · d), which can be factored into a product of terms in which the optical and
atomic vectors are completely separated:

(ε̂(i) · d)(ε̂(j) · d) =
∑
k,q

(−1)k−q
[
ε(i) ⊗ ε(j)

]k
q

[d⊗ d]k−q , (2.91)

where k runs from zero to two. In terms of Cartesian components, the spherical polarization
tensor

[
ε(i) ⊗ ε(j)

]k and dipole tensor [d⊗ d]k can be decomposed in the usual way for a
dyadic product of two vectors. That is,
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[
ε(i) ⊗ ε(j)

]0
0

= − 1√
3
ε(i) · ε(j) (2.92)[

ε(i) ⊗ ε(j)
]1
q

=
i√
2

(
ε(i) × ε(j)

)
· êq (2.93)[

ε(i) ⊗ ε(j)
]2

0
=

1√
6

(
3ε(i)z ε

(j)
z − ε(i) · ε(j)

)
(2.94)[

ε(i) ⊗ ε(j)
]2
±1

= ∓1

2

[(
ε(i)z ε

(j)
x + ε(i)x ε

(j)
z

)
± i
(
ε(i)z ε

(j)
y + ε(i)y ε

(j)
z

)]
(2.95)[

ε(i) ⊗ ε(j)
]2
±2

=
1

2

[(
ε(i)x ε

(j)
x − ε(i)y ε(j)y

)
± i
(
ε(i)x ε

(j)
y + ε(i)y ε

(j)
x

)]
, (2.96)

and similarly for d⊗ d. These tensors are entirely responsible for the structure of angular
momentum coupling in two-photon transitions, and using the Wigner-Eckart theorem we
find [56, 65]

|M |2 =

∣∣∣∣∣∑
k

2∑
J=0

〈
αFe‖

[
ε(i) ⊗ ε(j)

]J
[d⊗ d]J ‖βFg

〉
(−1)Fe+2J

√
2J + 1

×
1∑

µ,ν=−1

∑
M

(−1)−Me

(
Fe J Fg

−Me M Mg

)(
J 1 1

−M µ ν

)∣∣∣∣∣
2

, (2.97)

where α and β represent the additional quantum numbers that are required to fully specify
the initial and final states, and µ,ν index the spherical components of ε̂(i),ε̂(j). This expres-
sion can be further reduced through use of equation 2.16, and the reduced matrix element
can be explicitly factored into a form depending on the reduced matrix elements of d. (This
is useful in cases where pure LS-coupling does not apply, and a 6j symbol involving the
expansion coefficients of the physical eigenstates in terms of pure LS wavefunctions then
modifies the line strength.) However, we have already obtained in the product of the two
3j symbols, all that is required to infer the selection rules for two-photon excitation. For
example, σ̂+ polarization of both fields corresponds to µ= ν = +1, and we find that the
transition probability vanishes unless J = M = 2 and Me = Mg + 2.

2.2.4 N-Photon Excitation

The n-photon excitation rate for a weak cw laser beam can be calculated via nth-order
perturbation theory applied to the density matrix (see, e.g. [26] for explicit calculations of
the first few terms). The result is
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R
(n)
ba =

∣∣∣∣∣En

~n
∑
i,j,...,k

daidij · · · dkb
∆

(n−1)
ia ∆

(n−2)
ja · · ·∆(1)

ka

∣∣∣∣∣
2

2πρ(δ), (2.98)

where the sum extends over all dipole-allowed intermediate states, dij is the electric dipole
matrix element for the i→ j transition, δ = ωba − nω = ∆

(n)
ba is the n-photon detuning

from the a → b transition, and ρ(δ) is a lineshape function obtained by convolution of
the probe frequency spectrum with the density of final atomic states. The energy defects
∆

(m)
ia =ωia−mω express the m-photon detuning from the a→ i transition, and products of

these comprise the resonance denominator for each amplitude in the sum. Dependence on
the field polarization and propagation vectors enters mainly through the matrix elements,
while frequency dependence (including the Doppler effect) is determined by the lineshape
function and resonance denominator.

2.2.5 Polarization Rotation

Since multiphoton absorption is a nonparametric process, we can view the scattering rate
as the absorptive (imaginary) component of a complex refractive index. The corresponding
real part gives rise to dispersive phase shifts, which are straightforward to calculate in the
case of two-photon transitions by exploiting the formal analogy between one-photon and
two-photon excitation of two-level systems (see [36, 62] for detailed reviews of nonlinear
magneto-optics in the one-photon case). The result is

n
(2)
ba ≈ 1 +

n̄I~
ε20cΓb

∣∣∣∣∣∑
i

daidib

~2∆
(1)
ia

∣∣∣∣∣
2 δ

Γb

1 +
(
δ

Γb

)2 , (2.99)

where we have explicitly included a dispersive Lorentzian lineshape function that depends
on the excited state linewidth Γb as well as the detuning δ. The volumetric number density
of atoms is n̄, and the optical intensity is I; the other quantities that appear here are de-
fined following equation 2.98. Figure 2.1(a) shows the real and imaginary components of a
Lorentzian lineshape, which is usually an appropriate description of absorption and disper-
sion for E1 atomic resonances. In the case of two-photon electric dipole resonances, this
lineshape function remains a good approximation when the two-photon detuning is small
compared to the intermediate detunings, i.e. when δ � ∆

(1)
ia .

Since the atomic energy levels are shifted by interaction with an external magnetic
field, the resonance frequencies for transitions between states that have different magnetic
quantum numbers (or g-factors) also shift. A simple and illustrative example is the case of
circular birefringence, where we consider σ̂+ and σ̂− polarization, and consider the atomic
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quantization axis to be parallel with the wave vector of the light.

10 8 6 4 2 0 2 4 6 8 10

0

1

(a)

10 8 6 4 2 0 2 4 6 8 10

0

1

(b)

Figure 2.1: Absorption and dispersion... the complex index of refraction, plotted in dimen-
sionless units for the case of two-photon excitation where only the two-photon detuning is
allowed to vary.

The resonance frequency for σ̂± radiation is shifted by an amount

±∆ω = ±(gbµb − gaµa)Bz , (2.100)

where Bz is the magnetic field component along the quantization axis. The g-factors asso-
ciated with the total angular momentum of levels a and b are ga and gb, respectively; the
corresponding magnetic moments are µa and µb. (We are often interested in the situation
where the initial state has no electronic angular momentum, in which case µb � µa and
∆ω ≈ gbµbBz.) Thus the zero crossing of n(2)

ba − 1 is also shifted away from δ = 0, and in
opposite directions for opposite polarizations. In effect the atomic gas becomes optically
active in a magnetic field, to a degree that depends on the magnetic field strength. The
difference in refractive index when we compare σ̂+ to σ̂− is

n
(2)
ba [σ̂+]− n(2)

ba [σ̂−] =
n̄I~
ε20cΓb

∣∣∣∣∣∑
i

daidib

~2∆
(1)
ia

∣∣∣∣∣
2 2∆ω

Γb

[
1−

(
δ

Γb

)2

+
(

∆ω
Γb

)2
]

[
1−

(
δ

Γb

)2

+
(

∆ω
Γb

)2
]2

+
(

2δ
Γb

)2
, (2.101)

which has a maximum at δ = 0 as shown in figure 2.1(b). (The symmetry of the excitation
probability for unpolarized atoms under σ̂− ←→ σ̂+ was used to include the absolute
square of the matrix elements in coefficient of the lineshape function.)

We now recall that linearly polarized light is equivalent to a coherent superposition of
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σ̂− and σ̂+, in which the relative phase determines the angle of linear polarization with
respect to a fixed reference axis. Suppose we start with a linear polarization σ̂ that has a
relative phase of zero between the σ̂− and σ̂+ components; the optical path difference for
the two circular polarizations after propagating a distance L results in a relative phase

φ =
ωL

c

(
n

(2)
ba [σ̂+]− n(2)

ba [σ̂−]
)
. (2.102)

The axis of linear polarization is rotated through an angle φ/2 after propagating through
a cell of length L; note that the rotation angle is the same if the beam is retroreflected
through the cell, so that the acquired phase in a double-pass configuration is 2φ and not
zero. This “paramagnetic rotation” of the probe beam polarization is usually measured by
dividing the exiting beam on a polarizing beam splitter and recording the ratio of intensities
for two orthogonal linear components. When the rotation angle is small this means that the
visibility ratio, i.e. the contrast of the rotation signal, scales as φ2.

Suppose now that we are probing a polarized ensemble of atoms using a two-photon
F = 1

2
→ F ′′ = 3

2
transition, and let the optical wave vector k and magnetic field now

be perpendicular. We choose the quantization axis along k; in this case the σ̂− and σ̂+

resonances occur at the same frequency, but the strength of the atom-field coupling for
each (optical) polarization depends orientation of the (atomic) polarization vector µ. If
µ̂ · k̂=+1, then |n(2)

ba [σ̂+]− 1| is maximized; σ̂− radiation decouples from the atoms with
the result that n(2)

ba [σ̂−] − 1 = 0, since in this orientation the only excited state allowed by
angular momentum conservation has F ′′ = 3

2
,mF ′′ = +3

2
. If µ̂ · k̂ = −1, then we have

the opposite case: n(2)
ba [σ̂+] − 1 = 0 and |n(2)

ba [σ̂−] − 1| is maximal. Note that n(2)
ba [σ̂+] =

n
(2)
ba [σ̂−] = 1 when δ=0, since the magnetic field does not shift the two-photon resonance

frequency in this configuration. The rotation angle is maximized when δ=Γ.
If the atomic polarization vector is now allowed to precess about the magnetic field,

then the index contrast (and thus the rotation angle φ/2) is sinusoidally modulated at the
precession frequency. In this “perpendicular” geometry the rotation signal does not depend
on the excited state Zeeman splittings, as it does in the case where k̂ is parallel to the
magnetic field. The modulation is due to an amplitude asymmetry between the refractive
indices for σ̂− and σ̂+ radiation, rather than a shift of the actual resonance frequency. (We
can imagine using polarization rotation in the “parallel” configuration to detect oscillating
magnetic fields.)
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2.3 Pulsed Optical Fields

The frequency spectrum of a periodically repeated time-domain electric field such as

E(N)(t) =
N−1∑
n=0

E(t− nT ) (2.103)

(e.g., the pulse train depicted in figure 2.2) is [66]

E(N)
ω (ω) =

1− eiNωT

1− eiωT
Eω(ω) , (2.104)

where Eω(ω) is the Fourier transform of E(t). The corresponding intensity spectrum is

I(N)
ω (ω) =

1− cosNωT

1− cosωT
Iω(ω) , (2.105)

which displays the characteristic “comb” structure shown in figure 2.3. Although the spec-
tral bandwidth of a pulse can be much larger than the linewidth of an atomic resonance,
this comb structure allows spectroscopy to be performed with a resolution limited by the
width of an individual tooth, rather than the width of the entire spectrum. This technique,
known as direct frequency comb spectroscopy, is surveyed in detail in reference [67]. It is
also the underlying principle for the experiments using pulsed lasers reported in chapter 4.

The narrow teeth under the pulse envelope correspond to excited axial modes of the
laser resonator, and interpulse phase coherence is the time-domain result of phase-locking
their relative frequencies. Thus there are two complementary time-domain pictures: one in
which many cw modes oscillate simultaneously with fixed relative phases, and one in which
a single carrier frequency is amplitude-modulated by a time-varying envelope function.
Both pictures correspond to equivalent frequency spectra, provided the overall power and
power per mode are normalized correctly.

Although the relative phases of the various modes are obviously critical to a correct
description of the optical field, there is an interesting sum rule that roughly relates the total
average power to the power per mode. If we consider the frequency spectrum to be centered
at ω = 0, then the average power 〈P 〉 can be represented as

〈P 〉 = P0

∞∑
m=−∞

e−m
2ω2
r/∆

2

, (2.106)

where P0 is the power of the central mode,m is the (shifted) mode index, ωr is the (angular)
repetition frequency, and ∆ is the width of the (field) frequency spectrum. This represen-
tation can be used to express the power in each mode in terms of a Jacobi θ function,
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Figure 2.2: An optical pulse train with phase coherence between successive pulses. The
frequency spectrum of such a field quite generally takes the form shown in figure 2.3, where
the quasi-discrete modes shown in red are fully determined by two frequency parameters.
These are the repetition rate, fr = ωr/2π = T−1 (which corresponds to the inverse of
the round-trip time in the resonator producing the pulses), and the carrier-envelope off-
set frequency f0 = ∆φce/T (which describes the rate of phase slip between the carrier
wave and the field envelope maximum). The pulse duration τ determines the bandwidth of
the frequency spectrum, ∆ω ∼ τ−1, and thus also how many modes of the resonator are
excited.

θ3(0, r) =
∞∑

m=−∞

r−m
2

. (2.107)

Thus, 〈P 〉 = P0 θ3(0, e−ω
2
r/∆

2
), and we have an analytic expression to relate the power of

any given mode to the average power, for any pulse width and repetition rate.
We note that, for multiphoton excitation, the atomic lineshape function (green curve

in figure 2.3) need not overlap with any axial mode to resonantly excite an atom. If for
example it falls symmetrically between two comb teeth, then for two-photon excitation the
positive detuning of one tooth is exactly canceled by the negative detuning of the other one.
Similarly, any two modes that are symmetrically detuned from the atomic resonance will
produce a resonant contribution to the excitation amplitude: similar to the case of Doppler-
free multiphoton excitation, any combination of modes can resonantly excite an atom via a
multiphoton transition if the total detuning vanishes. For higher-order multiphoton transi-
tions, the number of resonant excitation pathways grows rapidly.

If we represent the laser field spectrum by

Eω(ω) ∼
∑
m

Ame
−i[(ωc+mωr)t−φm] , (2.108)
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Figure 2.3: Calculated frequency “comb” resulting from a periodically repeated envelope
function. The blue curve represents the spectral envelope of a series of Gaussian pulses,
whose phase coherence from pulse to pulse leads to the interferometric pattern shown in
red. We will often suppose that an atomic resonance line (green) overlaps one of the modes
in such a spectrum.
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where ωc is the carrier frequency, Am the amplitude of the mth mode, and φm a constant
phase, then the excitation amplitude for a two-photon resonance at optical frequency ω0

has the structure

〈e |M |g〉 ∼ e−2i(ω0−ωc)t
∑
k

AkA−ke
i(φk−φ−k) , (2.109)

where we have assumed that ωc is resonant with the atomic transition at ω0 and kept only
the correspondingly resonant contributions from other modes. Note that we must take the
absolute square of this amplitude to obtain the transition probability, which opens up the
possibility for different terms in the sum to interfere. The situation is simplest if the spectral
phase is odd, that is if φm = −φ−m for everym. In that case the phases cancel term-by-term
and there is no interference. If the spectral phase is even (φm = φ−m), then every term has
a finite complex argument and (unless they are all the same) some degree of interference is
guaranteed.

This situation accounts for the substantial concern paid to group velocity dispersion
(GVD) in experiments with modelocked lasers, including those presented in chapter 4.
GVD is a second-order spectral phase, and the different phases acquired by different modes
can reduce the excitation probability through this type of interference between different
optical excitation channels. Experimentally, GVD also broadens the pulse by introduc-
ing chirp; we have not discussed the various parameterizations of time- and frequency-
chirp that can be used to characterize non-transform-limited pulses. We only remark that
a transform-limited pulse (one with a minimal time-bandwidth product) has no chirp, and
that experimental sources of GVD tend to produce chirp that can be observed as pulse
broadening in the time domain via autocorrelation measurements.

2.4 Temporal Sensitivity

The “true” sensitivity of a magnetometer depends in excruciating detail on the experimental
configuration – and must in general be considered on a case-by-case basis – but we can go
a long way in the right direction by pursuing some naive scaling arguments. When the
field is measured through Larmor precession at a frequency ω, we have ~ω=gFµB, where
gF is the total angular momentum Landé g-factor, µ is the appropriate magnetic moment
(usually the Bohr or nuclear magneton), and B is the strength of the field giving rise to spin
precession. A dimensional estimate for the frequency uncertainty of a single precessing
spin is δω ∼ τ−1, where τ is the measurement time. Scaling for m repetitions, N spins,
and a signal-to-noise ratio η (assuming white frequency noise),
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δω ∼ 1

τη
√
mN

=
1

η
√
NTτ

, (2.110)

where we have assumed that the m measurements of duration τ are performed in a total
time interval T . The single-measurement timescale τ is usually constrained by relaxation
rates Γr such that τ ∼ Γ−1

r , so assuming this and converting the frequency to a magnetic
field we have

δB ∼ ~
gFµη

√
Γr
NT

. (2.111)

This is in fact the uncertainty due to atomic shot noise, and a very practical figure of merit
for the intrinsic field sensitivity. We immediately notice that a factor of ∼ 1800 is lost by
going from electronic spins to nuclear spins; fortunately Γr is much less in nuclear systems,
in some cases by enough to more than offset the factor of 1800.

To properly quote a magnetic field sensitivity, we should use the field uncertainty per
unit bandwidth δB/

√
∆ν, where ∆ν ∼ (2T )−1 is the frequency bandwidth resulting from

the temporal average

〈B〉 =
1

T

∫ t+T
2

t−T
2

B(t)dt . (2.112)

2.5 Spatial Sensitivity

The figure of merit for spatially resolved measurements can be viewed as arising from a
spatial frequency bandwidth, in analogy to the usual detection bandwidth that arises from
averaging a time-varying field over a finite interaction time. Each spatial dimension l thus
has an associated spatial frequency bandwidth δk ∼ l−1. Following [41], we can therefore
generalize the usual magnetic field sensitivity by explicitly including spatial dimensions
in the figure of merit 2.111. An optical magnetometer that consists of an atomic gas with
number density n̄=N/V occupying a volume V = lxlylz thus has a field uncertainty of

δB ∼ ~
gFµη

√
Γr

n̄T lxlylz
, (2.113)

and a sensitivity of δB/
√

∆ν∆κx∆κy∆κz, where ∆κi ∼ (2li)
−1 for i = x, y, z. Evidently

the “spatiotemporal sensitivity” (which has units of T/
√

Hz ·m3) scales as
√

Γr/n̄ .
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2.6 Diffusive Motion and Geometric Phases

The atomic Hamiltonian may depend on parameters such as position and local field strength
that (from the point of view of an atom) change in time. If this time variation is sufficiently
slow, then the spectrum of eigenstates and eigenvalues – which in general depend on these
parameters – evolves smoothly in time. A system initially prepared in an eigenstate thus
evolves with the usual dynamical phase, but also according to the time dependence of the
instantaneous eigenbasis. The Schrödinger equation requires that each eigenstate develop
an additional, nondynamical phase factor, which depends on the details of its parametric
variation [68]. Perhaps surprisingly, this “geometric” phase has important physical impli-
cations and (although it can be expressed as the line integral of a vector potential) cannot in
general be eliminated by a gauge transformation. In fact, geometric phases associated with
field inhomogeneities comprise an important class of systematic effects for magnetometers
and EDM searches.

Suppose we have an instantaneous eigenbasis that depends on time through the values
of the parameters R(t) = (x(t), y(t), ...):

H(R) |n(R)〉 = En(R) |n(R)〉 . (2.114)

The dynamical phase associated with a given eigenstate is thus

θn(t) = −~−1

∫ t

0

dt′En(R(t′)), (2.115)

and a state given by |ψ(0)〉 =
∑

n an(0) |n(R(0))〉 at t = 0 will evolve to

|ψ(t)〉 =
∑
n

an(t)eiθn(t) |n(R(t))〉 (2.116)

at a later time t. We can show from the time-dependent Schrödinger equation that

ȧn(t) = −
∑
m

am 〈n|ṁ〉 ei(θm−θn) , (2.117)

where the time dependence on the right hand side is left implicit for notational simplicity.
If we now differentiate 2.114 with respect to time, we can show that (for n 6= m)

〈n|ṁ〉 =
〈n| Ḣ |m〉
Em − En

, (2.118)

and so
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ȧn = −an 〈n| ṅ〉 −
∑
m6=n

〈n| Ḣ |m〉
Em − En

cme
i(θm−θn) . (2.119)

For sufficiently slow variation of H , the sum can be neglected and we have

an(t) = an(0)e−
∫ t
0 dt
′〈n|ṅ〉 ≡ an(0)eiγn(t), (2.120)

where we have defined the geometric phase γn = i
∫ t

0
dt′ 〈n| ṅ〉. The time evolution of |ψ〉

is now given by

|ψ(t)〉 =
∑
n

an(0)eiθn(t)eiγn |n〉 . (2.121)

We now note that |n〉 depends on t only through R, so in fact we can write |ṅ〉 = |∇Rn〉·Ṙ,
and defining the Berry potential An(R) = i 〈n| ∇R |n〉, the integral becomes

γn = i

∫ R(t)

R(0)

〈n|∇Rn〉 · dR =

∫ R(t)

R(0)

dR ·A(R) . (2.122)

If for some time t = T , R(0) = R(T ), then we have a closed line integral about some
circuitC, which depends only on the geometry in parameter space (i.e., not on the dynamics
of how the path is followed):

γn =

∮
C

dR ·A(R) . (2.123)

Now if we make a local gauge transformation |n〉 −→ eiβ(R) |n〉, then An −→ An +∇Rβ,
and so from equation 2.122

γn −→ γn + β(R(t))− β(R(0)). (2.124)

Thus, over a closed path the geometric phase factor eiγn is absolutely gauge-invariant, and
the geometric phase itself is gauge-invariant up to 2πm for integer m.

Applying these results to spins moving in a magnetic field, we consider the three field
components Bx, By, and Bz as parameters in the Hamiltonian H = µF ·B, where F is the
total angular momentum operator and µ the magnetic moment. Since we now have a sim-
ple three-dimensional parameter space, we can use Stokes’ theorem to transform equation
2.122 into a surface integral:
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γn =

∫∫
S

dS · ∇ ×A(B) (2.125)

= −Im

∫∫
S

dS · 〈∇Bn| × |∇Bn〉 , (2.126)

where S is a surface bounded by C. The cross product can be expanded by inserting a
complete set of states

∑
m |m〉 〈m|, and observing that 〈m |∇BEn(B)|n〉 must vanish, we

can exclude the m = n terms from the sum. The matrix elements with m 6= n are obtained
from 2.114, and we find

〈∇Bn| × |∇Bn〉 =
1

µ2B2

∑
m 6=n

〈n |∇BH|m〉
n−m

× 〈m |∇BH|n〉
m− n

, (2.127)

where we have used En = µBn. Now ∇BH = µF, and so we need to evaluate the matrix
elements 〈n |F|m〉. These are readily obtained from the raising and lowering operators
F± = Fx ± iFy and Fz, in a basis where B = Bẑ. Following [68], we rotate into such a
coordinate system to evaluate the cross product before rotating back to obtain the general
result. In the rotated coordinate system, we use

F± |n〉 =
√
F (F + 1)− n(n± 1) |n± 1〉 (2.128)

Fz |n〉 = n |n〉 (2.129)

to obtain

〈n± 1 |Fx|n〉 =
1

2

√
F (F + 1)− n(n± 1) (2.130)

〈n± 1 |Fy|n〉 = ∓ i
2

√
F (F + 1)− n(n± 1) . (2.131)

Only the ẑ component of the cross product is nonvanishing in this coordinate system, and
the only nonvanishing matrix elements are between pairs of states where m = n± 1. Thus,

〈∇Bn| × |∇Bn〉 =
−i

2B2
[−n(n− 1) + n(n+ 1)]

=
in

B2
, (2.132)
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and rotating back to the original coordinate system we have

〈∇Bn| × |∇Bn〉 = in
B

B3
. (2.133)

Finally,

γn = −n
∫∫

S

dS · B
B3

, (2.134)

which we recognize as −n multiplied by the solid angle subtended by S at B = 0. Thus, a
geometric phase arises due to the degeneracy in eigenvalues that occurs when the magnetic
field vanishes, and is proportional to the solid angle subtended at the degeneracy point in
parameter space by the path C.

2.6.1 Systematic Effects in EDM Experiments

In EDM experiments, static external electric and magnetic fields (E and B0, respectively)
are applied to a precessing ensemble of spatially confined spins. Geometric phases arise
both from magnetic field gradients (∂B0/∂z 6= 0, where ẑ is the quantization axis), and
from motional magnetic fields (Bm = v × E/c, where v is the translational velocity of a
particle in the ensemble).

As discussed above, a particle trajectory that follows a closed path in the parameter
space of magnetic field components will produce a finite geometric phase. When B0 is
completely uniform in space and the particles are stationary, no geometric phase is acquired
since the trajectories reduce to a single point in parameter space. However, real experiments
inevitably produce changes in the motional field due to changes in particle velocity, as well
as field gradients due to the finite extent of magnetic sources.

When the particle velocity is small, the magnitude of the total effective magnetic field
B = B0 + Bm includes terms that depend on Bm:

B ≈ B0 + B̂0 ·Bm +
B2
m

2B0

. (2.135)

These produce a shift of the precession frequency with respect to the case where Bm van-
ishes, which is given by [51]

∆ω ≈ µ

~c
B̂0 · (v × E) +

µ

2~c2

(v × E)2

B0

≈ µv

~c
θEBE +

µv2

2~c2

E2

B0

, (2.136)
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where θEB is the angle between B0 and E in the plane perpendicular to v. (We have
assumed in the second line that B0 and E are nearly parallel.) The term proportional to θEB
is linear in E and independent of B0; it therefore has the same correlation with B·E as a
permanent electric dipole moment. It is not, however, a signature of CP -violating physics:
the particle velocities v also change sign under T , and so simply changing the relative
direction of B0 with respect to E does not produce the true time-reversed Hamiltonian [51].

Geometric phases also arise from “cross-terms” that include contributions from both
gradients and motional fields, and indeed these can dominate the systematic error budget
of EDM experiments that rely on a cohabiting reference magnetometer. Geometric phase
effects in a mercury co-magnetometer were one of the most severe systematic limitations
in the most recent measurement of the neutron EDM [9]. Such effects are quantitatively
discussed in the literature, see for example [69, 70]. Recent numerical simulations also
indicate that they can lead to asymmetrical phase distributions, a result that is consistent
with nonextensive statistics [35].

Geometric phases that mimic an EDM can be minimized by using particles with a
very low mean velocity (this is a notable advantage of ultracold neutrons and laser cooled
atoms), and by confining the sample to a region of space where the applied fields are highly
uniform and parallel. In this respect, species whose spatial diffusion can be restricted by
buffer gas present a novel advantage [71, 72]. Magnetometry with spatial resolution would
be a particularly useful tool for diagnosing geometric phase systematics.

2.7 Summary

We have now laid the groundwork for discussing multiphoton electronic transitions excited
by cw and pulsed lasers. The scaling of excitation rate with optical intensity, intermediate
state detunings, and atomic density of states has a significant impact on the experimentally
achievable signal-to-noise ratio. These results are employed to interpret experimental data,
and to extrapolate the potential of future experiments in chapters 3 and 4. We have also seen
the origin of two-photon light shifts, and of the high spectral resolution that can be achieved
with modelocked pulsed lasers; these will play more important roles in future experiments
with improved laser stability. The discussion of geometric phases is particularly relevant in
EDM experiments, such as the one discussed in section 5.2.
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CHAPTER 3

Experiments with Ytterbium and
Continuous-Wave Lasers

This chapter mainly discusses experiments with atomic ytterbium, which has one- and
two-photon transitions from the ground state at relatively convenient laser wavelengths. Its
electronic structure is representative of other diamagnetic atoms, corresponding to a case
intermediate between helium and the heavier noble gases. These properties make ytterbium
an excellent candidate for studying two-photon excitation and nuclear spin polarization, in
an atom that can also be polarized and probed using more conventional one-photon E1
transitions. The naturally abundant isotopes include several with nuclear spin I = 0 and
one, 171Yb, with I= 1

2
; this provides a useful opportunity to cross-check experiments with

171Yb by repeating them using isotopes whose nuclei cannot be polarized. An atomic beam
and narrowband cw lasers are used to investigate the features of these transitions that are
influenced by nuclear spin, in a configuration where the excited state Zeeman splittings are
resolved (as are the hyperfine and isotope shifts).

In section 3.5 we present data from cw vapor cell spectroscopy of one-photon transi-
tions in mercury at 253.7 nm, and two-photon transitions in xenon at 256.0 nm.

Ytterbium (Z = 70) is the only lanthanide whose ground state electronic configuration
consists entirely of filled subshells. Seven stable isotopes occur naturally, of which 171Yb
and 173Yb have nonzero nuclear spin (see table 3.1). Chemically and spectroscopically it
is similar to the alkaline-earth metals, and it shares with them the electronic level structure
shown in figures 1.5 and 3.2. The natural linewidth of the 1S0− 1P1 transition (∼1.2 MHz)
is about 167 times less than for 1S0 − 3P1 (∼ 200 MHz) [3]. The corresponding radiative
lifetimes are τ3P1

≈850 ns and τ1P1
≈5 ns [73].

Ytterbium is a relatively heavy atom, and the finite single-photon electric dipole (E1)
transition rate for the “spin forbidden” 1S0 − 3P1 transition is a signature of the expected
breakdown ofLS coupling in its electronic excited states (see section 1.5). It is nevertheless
conventional to designate the excited states by an electron configuration and approximate
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Table 3.1: Naturally occurring isotopes of ytterbium [4]

Isotope Abundance (%) Nuclear Spin Nuclear Magnetic Moment (µN )
168Yb 0.13 0+
170Yb 3.05 0+
171Yb 14.3 1/2- +0.4919
172Yb 21.9 0+
173Yb 16.12 5/2- -0.6776
174Yb 31.8 0+
176Yb 12.7 0+

LS spectroscopic term symbols, where it is understood that the pure LS eigenstates are
mixed by the spin-orbit interaction. In the usual parameterization, the physical wavefunc-
tions are written in terms of pure LS components as

ψ(3P1) = αψ0(3P1) + βψ0(1P1) (3.1)

ψ(1P1) = αψ0(1P1)− βψ0(3P1) , (3.2)

where ψ0 denotes a pure LS eigenstate and α2+β2 =1. The coefficients have been exper-
imentally determined [74] to be α = 0.991 and β = −0.133. Neglecting decay channels
other than spontaneous E1 emission, these values account reasonably well for the differ-
ence in observed linewidth:

Γ1P1

Γ3P1

≈
(

556 nm
399 nm

)3(
α

β

)2

≈ 150 , (3.3)

where Γ1P1
= τ−1

1P1
and Γ3P1

= τ−1
3P1

are the reciprocals of the radiative lifetimes for the
indicated states.

Similarly, the 3D2 and 1D2 states are not pure LS coupled states and we can write

ψ(3D2) =
√

1− ξ2ψ0(3D2)− ξψ0(1D2) (3.4)

ψ(1D2) =
√

1− ξ2ψ0(1D2) + ξψ0(3D2) , (3.5)

where the mixing parameter ξ has been determined to be ξ = 0.13(1) [75]. The lifetimes
are τ3D2

≈460 ns and τ1D2
≈380 ns [75].

Before addressing magnetometry, we first describe the experimental apparatus and
present measurements that characterize the interaction of ytterbium atoms with cw lasers
and static magnetic fields.
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Figure 3.1: Vapor pressure and equivalent number density of ytterbium gas in thermal equi-
librium with solid ytterbium metal, as a function of temperature. The values are calculated
from a model equation with coefficients according to [1], and should represent the actual
vapor pressure to within ±5%.

3.1 Atomic Beam Apparatus

The experiments involving optical spectroscopy of ytterbium were performed with the
atomic beam apparatus shown in figures 3.3 and 3.5. The choice of an atomic beam rather
than a vapor cell is dictated by the low pressure of ytterbium vapor in thermal equilib-
rium with ytterbium metal (see figure 3.1), and by the hot gas’s propensity for destructively
reacting with glass and other optically transmissive materials. Experiments relying on yt-
terbium vapor cells typically use metallic heat pipe ovens, with differential heating to avoid
ytterbium condensation on optical surfaces.

The atomic beam operates in vacuum to achieve a long mean free path for its con-
stituent atoms, and to prevent unwanted chemical reactions from disrupting the optical and
magnetic interactions under investigation. It is collimated by passing through apertures and
the atoms are optically excited by laser beams along a transverse axis to minimize Doppler
broadening. This has the result that Zeeman structure in the excited state can be resolved
by tuning the excitation frequency, which provides a useful systematic check when deter-
mining the effect of optical pumping (since a given Zeeman level can be addressed either
by polarization or by frequency).

The vacuum chamber consists of an eight-inch spherical octagon (Kimball MCF800-
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Figure 3.2: Some low-lying electronic transitions and excited states of ytterbium, labeled
with spectroscopic term symbols. The states are labeled as for pure LS-coupling, but spin-
orbit mixing of the pure LS-eigenstates allows intercombination transitions such as the
1S0 → 3P1 intercombination line (green arrow). For magnetic level structure of the spin-1

2

isotope 171Yb, refer to figure 1.5(b).

SO2000800), with a 6.3-inch (∼ 16 cm) bore and two standard 8′′ ConFlat flanges. The
upper flange connects to a turbo pump and mechanical pump in series, which maintain a
base vacuum of ∼1×10−6 Torr. The lower flange is sealed to a stainless steel plate, which
has an optical window in the center to couple fluorescence light out of the chamber and into
a photomultiplier tube (PMT). A machined recess around the window is used to seat the 3′′

aluminum “spectroscopy box” (described below and shown in figure 3.7). Standard 2-3/4′′

ConFlat flanges on each of the eight faces of the spherical octagon are used for optical
windows, electrical feedthroughs, a vacuum gauge, and the effusive ytterbium oven.

The source for the atomic beam is the effusive oven shown in figure 3.6, which consists
of a tantalum shell containing natural-abundance ytterbium metal (see table 3.1 for isotopic
abundances). Metallic ytterbium is placed in the tubular tube, and a steel washer is spot-
welded over the open end to hold it in place. The hole at the center of the washer provides an
aperture through which the beam effuses. The oven and electrical feedthrough are mounted
into a ConFlat nipple, which is connected to a flange on one octagonal face so that the beam
crosses the center of the chamber. It is resistively heated by an externally supplied current
of ∼ 60 A, producing a thermal beam with volumetric number density n̄ ∼ 108 cm−3 and
mean velocity vth ∼ 300 m/s under normal operating conditions.

The oven output is quite stable after a warm-up period of one hour, and fluctuations in
the fluorescence signal, after adequate warm-up, usually indicate that the ytterbium needs to
be replenished. The oven has a useful lifetime of several months per loading cycle, and the
atomic beam flux can be increased to compensate for this gradual decay (or for a measure-
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Figure 3.3: Ytterbium atomic beam vacuum chamber and associated optics. The red exter-
nal field coils are clearly visible in the upper picture, and the optics just left of center guide
the pump and probe beams into the chamber. External detection optics and the photomulti-
plier tube are contained in the light-shielded box under the vacuum chamber. The pictures
below left and right show detail of the normal-incidence flange adapter for the pump beam
windows (see also figure 3.4).
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Figure 3.4: The normal-incidence flange adapter, designed and installed to eliminate polar-
ization dependent backgrounds resulting from the pump beam. A stainless steel connector
tube is welded between bored holes in standard 2-3/4′′ blank ConFlat flanges, one at nor-
mal incidence and one at 45◦. The offset from center on the 45◦ flange is to position the
beam in the center of the clear aperture for transmission through the spherical octagon.

wavelength meter
(HighFinesse WS-Ultimate)
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Figure 3.5: Block diagram of the cw atomic beam experiment, showing major equipment
connections and key optical elements. Only one of the two possible probe beams is used at
one time.
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Figure 3.6: Tantalum oven for ytterbium atomic beam source, showing copper leads and
ConFlat flange with electrical feedthrough. The beam emerges to the reader’s right.

ment requiring a larger signal) by increasing the oven current. Since the oven is operated
in fixed-current mode, a slow increase over time in the supplied voltage can be monitored
to estimate the remaining lifetime (ytterbium depletion changes the total resistance of the
oven). The amplitude of the fluorescence signal from the 556nm 171Yb, F = 1

2
→ F ′= 1

2

transition is also used as a benchmark for fluctuations in oven performance.
The 2-3/4′′ ConFlat flanges on either side of the oven are used to hold windows for an

optical pumping beam resonant with the 556 nm 1S0 − 3P1 intercombination transition. In
order to mount the windows normal to the pump beam (and thereby maintain the polariza-
tion of the transmitted beam), the adapting connectors shown in figures 3.3 and 3.4 were
custom-made by boring a 45◦ hole through a blank ConFlat flange, and welding a stain-
less steel connector tube between it and another flange at 90◦ to the beam axis. With this
configuration, the polarization-dependent background that limited early beam experiments
was completely eliminated. (The probe beam transects the chamber on a diameter, and so
naturally enters the windows at normal incidence.)

The spectroscopy box at the center of the chamber surrounds the region where the
atomic beam interacts with the probe light, a distance of approximately 7.4 cm from the
the pump beam. (This distance corresponds to ∼ 250 µs time of flight at the estimated
mean thermal velocity). It consists of a 60 mm cage cube (Thorlabs LC6W), with a 12 mm
circular aperture mounted in the front face that serves as the second collimating constriction
for the atomic beam. Condenser lenses are mounted confocally above and below the box’s
center, to collect laser-induced fluorescence (LIF) light and direct it through the window in
the baseplate to a PMT (Hamamatsu H8259) below the chamber. The remaining apertures
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Figure 3.7: Internal Components of Ytterbium Atomic Beam Chamber

(a) Internal coils and spectroscopy box, viewed
through the open upper flange of the spherical oc-
tagon. In this view, the atomic beam crosses the
chamber from bottom to top and the pump and
probe beams cross from left to right. The upper mir-
ror housing visible in (b) has been removed from the
spectroscopy box.

(b) Spectroscopy box viewed along the
atomic beam axis; the collimating aperture
in the front face is visible. Condenser lenses
(NA = 0.554) are mounted inside for high-
efficiency light collection. The top attach-
ment redirects fluorescence through the bot-
tom lens, forming a folded 4f system.

in the box are baffled with sections of lens tubing, to prevent ambient light and scattered
laser light from reaching the PMT.

Shaped and discriminated pulses from the PMT head (2.2 V height, 30 ns width) are
sent to a photon counter (Stanford Research Systems SR400), and read into a data acqui-
sition computer (Windows XP) over an RS-232 interface. The computer interfaces with
the photon counter through a MATLAB control script, which regulates most aspects of the
experiment and performs online data analysis. Gate settings are entered into the control
script at the beginning of the experiment, and automatically written to the photon counter
when the script verifies equipment connections prior to recording data. When the photon
counter is not triggered by an external device such as an optical chopper, the script also
provides a trigger signal for each recorded data point.

The computer also has USB connections to a wavelength meter (HighFinesse/Ångstrom
WS Ultimate), and the voltage controller for a liquid crystal retarder (Thorlabs LCR-1-
NIR). Both are ultimately handled by the same control script; the waveplate is discussed
later on. The wavemeter is calibrated by periodically referencing a frequency-stabilized
HeNe laser (SIOS SL 02/1), which is fiber-coupled to a second port independent from the
measurement port. The wavemeter displays two modes of frequency instability: a slow
drift of several MHz per day which is observed by measuring the center frequency of the
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same reference transition at 556 nm (171Yb, F = 1
2
→ F ′ = 1

2
), and infrequent diabatic

jumps of ∼ 40 MHz that occur without a clear cause. It is possible that this is related
to some intrinsic instability in the reference HeNe, and future experiments would benefit
from a reference laser that is stabilized to an atomic or molecular resonance. Since the
accuracy of the measured frequency also depends on its separation from the calibration
frequency, a particularly attractive option is to use the same transition that is being studied
as a frequency reference.1

The laser used for optical pumping is a frequency-doubled, tunable diode laser (Toptica
TA-SHG 110) which provides approximately 1 mW at 556 nm. The nominal linewidth is
∼ 200 kHz, and the frequency can be tuned over a range of several hundred GHz. The
fundamental light is supplied by an 1112 nm diode laser, which is line-narrowed by grating
feedback and optically isolated from the frequency doubling stage. The doubler consists
of a LBO crystal mounted in a resonant cavity, whose optical path length is locked by
the Pound-Drever-Hall technique [76, 77]. Fine frequency adjustment is provided by a
piezoelectric transducer, which scans the fundamental cavity. If the frequency change is not
too large or too rapid, the cavity follows without losing its lock and the 556 nm frequency
is also adjusted. For larger frequency changes, a coarse adjustment of the grating moves
the center of the finely tunable dynamic range.

A small amount of the 556 nm light is picked off and fiber-coupled into the wavemeter
to monitor the laser frequency. The wavemeter is controlled by a computer program that
runs simultaneously with the MATLAB control script, and generates a PID error signal
for laser stabilization if the measured frequency deviates from a prescribed value or time
series. The error signal is converted to a voltage and sent to the piezoelectric transducer
via an analog output board (National Instruments PCI-6713). The tuning sensitivity was
calibrated by applying a known drive voltage and measuring the frequency response with
the wavemeter; the sensitivity is entered as a scaling parameter in the control program. In
practice, optimal frequency control is obtained by placing an RC filter and a 100 kΩ resistor
between the data acquisition card and the laser, to smooth and scale the control voltage. The
scaling due to the “voltage divider” is then included in the sensitivity calibration.

A typical measurement such as the fluorescence spectrum shown in figure 3.10 involves
a sequential scan through a list of laser frequencies, where the laser is held for some time
at each constant frequency as data is collected. In this case the control script sets the
scan parameters by sending them to the wavemeter program before data acquisition begins,

1We attempted to do this using saturated-absorption spectroscopy of a hollow-cathode ytterbium dis-
charge. Due to the large magnetic fields applied in the atomic beam experiment, the atomic resonances in
the beam are shifted by several MHz relative to those in the discharge. This approach therefore requires
additional frequency-shifting elements, or an off-resonant measurement at low magnetic field
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Figure 3.8: The Toptica TA-SHG 110 used to produce 556 nm light resonant with the
1S0 → 3P1 transition in ytterbium. The top half contains (A) the grating-feedback seed
laser of 1112 nm wavelength, (B) and (D) optical isolators, and (C) anamorphic beam-
shaping prisms. The lower half contains mode-matching optics (E) and (F), which prepare
the beam for injection into the resonant doubling cavity (H). An optical error signal from
the cavity is recorded on a photodiode (G) for Pound-Drever-Hall locking of the cavity
resonance. The 556 nm beam produced by the BBO crystal in the cavity is coupled out and
filtered (I) before being shaped with an additional set of anamorphic prisms (not shown).
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Figure 3.9: Detail of the resonant frequency doubling cavity. The four mirrors of the
“bowtie” cavity are visible, and the doubling crystal is mounted in the small metallic
temperature-stabilized platform between the lower two mirrors.

and verifies the frequency by querying the wavemeter before and after each data point is
collected from the photon counter. For measurements at fixed frequency, or where the
frequency is adjusted smoothly, a reference function (laser frequency as a function of time)
is programmed into the wavemeter interface for PID feedback and similarly verified by
online measurements as photon counting data is collected. With optimal PID settings, the
measured frequency fluctuates by approximately 0.5 MHz when the reference function is a
constant.

The two-photon probe laser is a cw Ti:sapphire oscillator (Coherent MBR-110), which
is externally stabilized by a reference cavity and internally tunable via the error signal
generated from an intracavity etalon. Under optimal operating conditions, the Ti:sapphire
can supply 4 W at 808 nm, with sub-MHz linewidth and the ability to automatically scan
the laser frequency over a specified range by tuning the reference cavity. In principle the
wavemeter can simultaneously monitor several lasers by coupling them through an opti-
cal fiber switcher, but the loss in frequency resolution is considerable (a factor of five to
ten). This is due to the duty cycle of the fiber switcher, and to the large-core fiber that is
required to efficiently couple widely separated wavelengths through the same device. It is
possible to simultaneously measure the frequencies from both lasers with the wavemeter,
and to provide a control signal to one or both of them – but we found that in practice it is
much more useful to scan the probe laser scan independently (without feedback from the
wavemeter).

The liquid crystal variable waveplate is a transmissive optical element whose birefrin-
gence is adjustable by changing the amplitude of a 2 kHz square wave applied to it. When
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Figure 3.10: Typical fluorescence spectrum at 539.384 THz (∼ 556 nm) as a function of
probe frequency, showing resonance lines (from left to right) of 173Yb, 171Yb, and 176Yb.
Their relative spacing is due to hyperfine and isotope shifts.

the voltage is low the liquid crystal molecules have a preferred axis that is defined by an
alignment layer on the substrates that confine them. The preferred axis at zero voltage is
in the plane of the optical surface, so the birefringence (and thus retardance) is maximal
when no voltage is applied. As the drive amplitude increases, the crystal axis is tilted into
alignment with the surface normal and the retardance is reduced. At a drive amplitude of
25 V, the crystal saturates and the molecules (except those in contact with the alignment
layer) are perfectly aligned with the optic axis; in this case birefringence disappears. A
measured retardance curve for the device at 556 nm is shown in figure 3.11; although the
coating is designed for near-infrared wavelengths, the transmission is quite high at 556 nm
and we needed only to recalibrate the retardance curve.

The waveplate can be switched between two different drive amplitudes at a modulation
frequency of up to 150 Hz, and a slew rate of 10 V/ms. When the crystal axis is oriented
at 45◦ relative to an incident linear polarization, this allows us to switch between a λ

4
plate

and a 3λ
4

plate configuration, so that the transmitted polarization switches between σ̂+ and
σ̂− when the atomic quantization axis is aligned with the optical wave vector. Since this
is done without physically moving any optics, the effect is highly reproducible and allows
phase-sensitivity in the detection of optical pumping signals with polarization-modulated
pump light.
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Figure 3.11: Measured retardance curve for liquid crystal variable waveplate at λ=556 nm.
The vertical axis shows the relative delay in wavelengths between linear polarization com-
ponents along the fast and slow axes, i.e. d∆n/λ where d is the waveplate thickness, ∆n
is the difference in index of refraction between the fast and slow axes, and λ is the wave-
length. At drive voltages of 3.375 V and 1.5 V, the waveplate functions respectively as a
quarter-wave plate and a three-quarter-wave plate. By switching between these values with
a linearly polarized input beam, the sense of pump polarization can be changed from σ̂− to
σ̂+ without moving any optics.

3.2 Optical Pumping (One-Photon Transitions)

The simplest interesting experiment that can be done with the atomic beam is to produce
and then measure static nuclear spin polarization using an E1 transition. The “green”
556 nm intercombination line is a natural starting place for both of these steps, since it is a
good compromise between the strong transition from 6s2 1S0 to 6s6p 1P1 and the weak two-
photon transition to 5d6s 3D2. The spin-orbit interaction that couples different eigenstates
of S also serves as an analogue for the hyperfine interaction, which couples different eigen-
states of I. (In each case, the interaction mixes eigenstates of a spin quantum number that
are not directly coupled by the electric dipole operator.) The green transition thus serves as
a baseline for the subsequent studies of two-photon excitation, and in fact measurements
of this type revealed several limitations of the apparatus. These limitations include polar-
ization losses on the original angled pump windows, and inhomogeneities of the applied
magnetic field due to geometrical constraints within the chamber. These were respectively
resolved by installing the normal-incidence adapters shown in figures 3.3 and 3.4, and by
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applying a very homogeneous magnetic field with large externally mounted coils (see fig-
ures 3.3 and 3.13).

For these “one-photon” pump/probe experiments, both the pump and the probe beam
are resonant with the 556 nm transition. The atoms interact first with a relatively intense
pump beam, which propagates along the magnetic field axis and perpendicular to the mean
atomic velocity vector. We can therefore produce any pump polarization that can be ex-
pressed as a superposition of σ̂− and σ̂+; since we choose the quantization axis to be
parallel with both the optical the wave vector and the magnetic field axis, there can be no π̂

component. If the atoms are optically pumped into the mF =+1
2

ground state and the field
does not change too rapidly in their moving reference frame, then the atomic polarization
adiabatically follows the magnetic field and the atoms remain polarized state until they are
probed. Note that the 3P1 excited state has a radiative lifetime of less than 1 µs, which
is approximately 1/250 of the mean time of flight between the locations of the pump and
probe beams. Thus, fluorescence due to the pump beam is completely negligible in the
probe region.

1 3 5 7

0

50

100

150

200

-50

Figure 3.12: Magnetic field strength in the region between the pump beam (left limit) and
the probe beam (right limit), calculated from a numerical model of the internal coils. Note
that the field strength changes by roughly 50% between 5 cm and 7 cm (i.e., in ∼70 µs for
an atom in the beam). The calculated field corresponds to 15 amp-turns applied to the coils
shown in figure 3.7.

The field produced by the coils shown in figure 3.7 is actually quite inhomogeneous (see
figure 3.12), in direction as well as magnitude. A characteristic timescale that defines the
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Figure 3.13: Calculated contours of magnetic field strength in the region around the atomic
beam, which is represented by the red line. The field is produced by external coils visible
in figure 3.3, shown here in blue. Field lines in each plane are spaced by 50 µT.

adiabaticity criterion for the atoms is the Larmor precession period, which for the ground
state of 171Yb is ∼ 267 ns in a 1 T magnetic field. We are concerned with fields of order
1 mT, and therefore with changes on a timescale of ∼ 267 µs, which is comparable to
the time of flight across the region where the field is changing. If the field changes by a
significant fraction of 1 mT between the pump and probe regions, the spins may not be
transported adiabatically. Indeed, numerical simulations of the magnetic field produced by
the coils shown in figure 3.7 suggest that adiabaticity may be violated for moderate applied
currents (see figure 3.12).

The spatial inhomogeneity of the magnetic field together with the use of narrow
linewidth lasers also has an important consequence for these experiments, namely that in
the pump and probe regions the Zeeman splittings are different by considerably more than
the laser linewidth. Since both beams are produced by the same laser, we must then either
detect an off-resonant interaction, or find some way of shifting the relative frequencies of
the pump and probe beams to compensate for the difference in resonance frequencies. It
turns out that the off-resonant interaction is detectable (see figure 3.14), although we could
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also envision using acousto-optic modulators to shift a component of the laser light by the
small frequency difference required to compensate for the shifted resonance.

We can understand this situation by realizing that the linewidth of the atomic transitions
is dominated by residual Doppler broadening. Interaction with the pump and probe beams
does not significantly affect the atomic velocity, since the momentum of a thermal atom
(∼ 40 au) is significantly larger than the recoil from absorbing or emitting a 556 nm photon
(∼ 6×10−3 au). This decoupling of motional and internal states means that an atom whose
resonance is Doppler-shifted by δω from the central absorption resonance of the mF = ±1

2

ground state will have its new resonance shifted by the same amount from the central
absorption resonance of the mF = ∓1

2
ground state after being optically pumped by σ̂∓

radiation. That is, independent of the value of δω, after optical pumping the atom’s new
resonance frequency will be shifted by the ground state Zeeman splitting gFµNB from the
original resonance frequency, (i.e., by a few MHz).

Unfortunately this means that when the Zeeman splitting exceeds the laser linewidth,
an atom which was resonant with the pump beam will not be resonant with the probe
beam, and vice versa. Detecting optical pumping in this situation requires an off-resonant
measurement: we must detect a small change in nuclear spin polarization far away from
the resonance frequency where it is most visible. Any signal results from the small but
finite probability to absorb photons at large detunings from resonance, or from atoms that
were resonantly excited by the weak tails of a narrow laser spectrum. The probability
for single-photon absorption in a homogeneously broadened resonance is proportional to a
normalized Lorentzian lineshape function

L(δ, γ) =
( γ

2π

) 1

δ2 + (γ
2
)2
, (3.6)

which falls off as δ−2 for |δ| � |γ|. Estimating the laser linewidth to be∼200 kHz, we find
that for a Zeeman splitting of a ∼ 1 MHz the off-resonant transition probability is already
reduced by two orders of magnitude. We must bear this in mind when interpreting the
polarization signals in figure 3.14, since the apparent contrast corresponds to at most a few
percent of the actual polarization.

This rough estimate indicates that the velocity class which is resonant with the pump
beam is close to fully polarized, and remains so in the probe region. The small modula-
tion depth of the signals in figure 3.14 (0.5%-1%) therefore results from a small overlap of
the probe field spectrum with the resonance frequencies of the polarized atoms, not from
low nuclear polarization. We have thus demonstrated that highly efficient detection is not
required to observe nuclear spin polarization in a relatively weak E1 transition; the require-
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Figure 3.14: The upper two figures show the off-resonance effect of 556 nm optical pump-
ing with various light polarizations on 171Yb, as measured with a fixed probe polarization.
The amplitude of the sinusoidal fit corresponds to the degree of measurable ground-state
nuclear spin polarization. The bottom two figures show the same measurement performed
on 176Yb, which has no nuclear spin and therefore cannot be polarized in the J=0 (F =0)
electronic ground state. The lack of a polarization signal in the I = 0 isotopes provides an
important systematic check in the two-photon case; in this case the fit function is a constant.
(Note that for two-photon excitation there are significant qualitative differences in the Zee-
man spectra of isotopes with and without nuclear spin. This phenomenon is illustrated in
figure 3.19.)
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ment to detect a small signal obscured by a large background is also characteristic of the
two-photon experiments discussed later in this chapter.

3.2.1 Zeeman Splittings in a Homogeneous Field

In order to improve the detection contrast for ground state nuclear polarization, the inter-
nal field coils were replaced with large coils outside the vacuum chamber that produce a
considerably more homogeneous field (see figures 3.3 and 3.13). This modification also
provided the opportunity to quantitatively study the excited state Zeeman structure, and to
perform basic measurements of the applied field strength (see figure 3.15). This was a cru-
cial step towards studying polarization sensitivity using a the two-photon transition, since
optimal contrast requires optical pumping at frequencies corresponding to velocity classes
that are resonantly detected by the two-photon probe.

For the 171Yb F = 1
2
→ F ′ = 1

2
transition, only two Zeeman sublevels exist in the

excited state. (Ground state Zeeman splitting is not resolved in the spectra presented here,
since it arises due to a nuclear magnetic moment that is ∼ 1800 times smaller than the
excited state electronic magnetic moment.) When they are probed with equal efficiency, as
for linear polarization, we can model the lineshape as

f1(ω) = A+
B

1 +
(

2ω−2ω0+∆
2γ

)2 +
B

1 +
(

2ω−2ω0−∆
2γ

)2 , (3.7)

which is used as a fit function for the data shown in figure 3.15. The parameter values
resulting from the fit lines shown in figure 3.15 are recorded in table 3.2. Note that the true
lineshape for each transition is not a Lorentzian (due to residual Doppler broadening), but in
the region of the spectrum near the peaks this lineshape is a quite reasonable approximation.
Farther from resonance, it would be necessary to take more careful account of Doppler
broadening in order to model the tails of the distribution.

When the atoms are optically pumped, or the probe polarization is not perfectly linear,
the spectral peaks corresponding tom′F =±1

2
have different amplitudes due to the modified

scattering rates for σ̂− and σ̂+ radiation. This is precisely the type of modulation that needs
to be detected for a two-photon magnetometer, and it is therefore important to be able to
distinguish the effect of imperfect probe polarization from that of optical pumping. A fit
function appropriate to this task is

f2(ω) = A+
B

1 +
(

2ω−2ω0+∆
2γ

)2 +
(1 + ε)B

1 +
(

2ω−2ω0−∆
2γ

)2 , (3.8)
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Figure 3.15: Zeeman splittings measured in a homogeneous external field. (a) Frequency
splitting between the m′F = ±1

2
sublevels of

∣∣3P1, F
′ = 1

2

〉
as a function of coil current,

measured by fitting a range of spectra like those shown in (b)-(d). The transition is probed
with linear σ̂-polarized light, such that both peaks can be observed in the same dataset. The
Zeeman splitting is extracted via a fit (see table 3.2) to the sum of two Lorentzian functions
and a constant background (equation 3.7). The fit determines the individual line centers and
the center of gravity. The two resonance peaks are constrained by the fit to have the same
amplitudes and widths; see figure 3.16 for an alternative analysis with an additional free
parameter. (b) Corresponds to the case of no applied field (and therefore no measurable
splitting), while (c) and (d) illustrate the effect of slightly different applied fields on the
measured spectra.
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Figure 3.16: The same data sets shown in figure 3.15(b)-(d), now analyzed with the fit
function equation 3.8. In this case the two peaks are allowed to have different amplitudes,
which accommodates asymmetries due to optical pumping or elliptical probe polarization.
See table 3.3 for the fit parameters; most of these agree well with the values in table 3.2. The
most notable difference is in figure (c), which has a noticeable asymmetry of approximately
2% between the left- and right-hand peaks. Asymmetries of this magnitude correspond to
a fraction of a degree in the alignment of the probe waveplate, and must be characterized
in detail for optical pumping and magnetometry.
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Sub-figure A (Hz) B (Hz) ∆ (MHz) ω0 (MHz) 2γ (MHz)

(b) −4.9× 104 9.93× 105 2× 10−3 504.2 25.4
(c) −1.6× 104 6.69× 105 16.9 504.9 22.9
(d) 3.4× 104 6.60× 105 17.7 504.4 21.9

Table 3.2: Fit parameters for the data shown in figure 3.15 (b)-(d). The fit constants are
defined by the function f1(ω) given in equation 3.7.

Sub-figure A (Hz) B (Hz) ε ∆ (MHz) ω0 (MHz) 2γ (MHz)

(a) −4.9× 104 9.93× 105 3× 10−9 2× 10−3 504.2 25.4
(b) −2.0× 104 6.73× 105 1.3× 10−2 16.9 505.0 23.0
(c) −3.3× 104 6.68× 105 2.0× 10−2 17.7 504.6 21.9

Table 3.3: Fit parameters for the data shown in figure 3.16 (a)-(c). The fit constants are
defined by the function f2(ω) given in equation 3.8.

and figure 3.16 shows the result of this fit applied to the same data that are shown in figure
3.15. The fit parameters for these data with the asymmetric fit function f2(ω) are recorded
in table 3.3, and the values for the fit parameters other than ε are largely consistent with the
result of the “equal-amplitudes” fit to f1(ω).

An asymmetry of approximately 2% is visible in figure 3.16(c), and confirmed by the fit
to f2(ω). Since no optical pumping was applied for these datasets (and the thermal Boltz-
mann polarization is many orders of magnitude smaller than the observed asymmetry), we
can conclude that this is due to imperfect probe polarization. This asymmetry corresponds
to a misalignment of a waveplate axis by considerably less than a degree; such a level of
detection sensitivity is important for two-photon experiments where the signature of opti-
cal pumping may be considerably weaker, but also imposes stringent requirements on the
alignment and stability of optical components.

We now turn our attention to similar studies using the 808 nm two-photon transition,
and discuss the differences in apparatus and data analysis required to perform measure-
ments of comparable precision.
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3.3 Two-Photon Spectroscopy

Figure 3.17 shows fluorescence spectra recorded at 556 nm, following excitation of 174Yb
and 171Yb using 808 nm cw radiation from a Coherent MBR-110 Ti:sapphire laser (see fig-
ure 3.5). These data show the effect of different probe polarizations and a relatively large
applied magnetic field; the 171Yb transition overlaps somewhat with various components
of the 174Yb transition, but the peaks are reasonably well separated when the probe polar-
ization is σ̂− or σ̂+ (red and green data series). The 171Yb transition shown in figure 3.17
is the F = 1

2
→ F ′′ = 3

2
hyperfine component, which is the transition relevant for two-

photon magnetometry. This is the experimental configuration used in attempts to measure
the effect of optical pumping on the two-photon scattering rate; leading up to that, we now
discuss how the effects of probe polarization and Zeeman shifts can be disentangled for
other probe polarizations and weaker magnetic fields.

An important feature of two-photon excitation is that selection rules occur which have
no analogy in the single-photon case; these include the “Landau-Yang” selection rule that
two-photon excitation with a total angular momentum change of unity is only possible
with two photons of differing frequency and polarization [78]. For degenerate photons,
only |∆F |= 0, 2 are therefore possible. In the case of linear σ̂ polarization, which states
can be excited depends on the multiplicity of the ground and excited state magnetic sub-
levels: some levels may be inaccessible because they can only be reached via a ∆mF =±1

transition, which cannot satisfy angular momentum conservation unless a photon with π̂

polarization is involved. (Again, we ignore the possibility of π̂ polarization in the probe
beam, due to the alignment of the beam and magnetic field axes.)

This circumstance introduces a qualitative difference in the two-photon spectra of yt-
terbium isotopes with and without nuclear spin (see figure 3.19): those having a (total) spin
zero ground state will have states “missing” from the distribution of observed lines. In the
isotopes with finite nuclear spin, every excited state can be reached from some ground state
by some combination of σ̂− and σ̂+ polarizations, but the observed line strengths depend
on the angular momentum coupling coefficients and the multiplicity of allowed excitation
pathways. This makes it intuitively clear that the peak signal will be highest for σ̂− or
σ̂+ polarization, where the number of allowed Zeeman transitions is minimized – as ex-
perimentally verified in figure 3.17. This is because a larger fraction of the probe field is
coherently driving the same resonance, rather than a lower amplitude of each polarization
being split among several different resonances – adding atoms is not the same as adding
photons. In some sense, this is the essential feature of nonlinear optics.
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Sub-figure A0 (Hz) A1 (Hz) A2 (Hz) A3 (Hz) ω0 (MHz) ∆ (MHz) 2γ (MHz)

(a) -2.5 165 156 131 604.9 16.6 9.5
(b) -6.8 145 134 136 604.4 16.6 10.5
(c) -5.5 128 142 167 604.3 16.4 9.7

Table 3.4: Fit parameters for the data shown in figure 3.18 (a)-(c). The fit constants are
defined by the function g(ω) given in equation 3.9.

3.3.1 Probe Polarization and Allowed Transitions

Figure 3.18 shows a series of measurements using 172Yb, which has no nuclear spin and
therefore cannot be optically pumped. These data are used similarly to those presented in
figures 3.15 and 3.16, to quantify the effects of slightly imperfect linear probe polarization
on the fluorescence spectra that result from two-photon excitation. Due to angular mo-
mentum conservation, not all of the excited state magnetic sublevels can be probed with σ̂

polarized light. The peaks in the fluorescence spectra of figure 3.18 correspond (from left
to right) to m′′J =−2, 0, 2. Note that m′′J =−2 can only be excited by the σ̂− component of
the probe field, m′′J =+2 can only be excited by the σ̂+ component, and m′′J =0 requires a
contribution from both (allowed excitation channels are diagrammed in figure 3.19).

The 172Yb spectra therefore provide a sensitive means of characterizing Zeeman shifts
and effects due to probe polarization in the two-photon transition, which is a critical base-
line for measurements of 171Yb in which optical pumping can play a role (and which is
the most useful test system for two-photon magnetometry). The fit function used for these
spectra is

g(ω) = A0 +
A1

1 +
(
ω−ω0−∆

γ

)2 +
A2

1 +
(
ω−ω0

γ

)2 +
A3

1 +
(
ω−ω0+∆

γ

)2 , (3.9)

where each term is allowed to have an independent amplitude but the widths are all the
same. We could further constrain the A2 to be a fixed linear combination of A1 and A3,
but leaving it independent allows us to characterize the degree to which π̂ transitions occur
due to pointing errors of the probe beam. Parameter values extracted from these fits are
recorded in table 3.4. Note that we are able to plot an extrapolated fluorescence curve for
any of the three allowed transitions by setting the amplitude parameters for the other two
transitions equal to zero.

The observed Zeeman splitting in figure 3.18 is between the m′F = 0,±2 sublevels of
the 3D2 state; this splitting can be calibrated by the known Landé g-factor, and the relative
amplitudes of the three sub-peaks are determined by Clebsch-Gordan coefficients and the
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Figure 3.17: Raw data showing two-photon excitation of 174Yb and the F = 1
2
→ F ′′ = 3

2

hyperfine transition in 171Yb, in a 1 mT magnetic field. Blue: A linearly polarized probe
excites all allowed transitions in both isotopes (see figure 3.19). Red: A σ̂− probe excites
only mJ =0→m′′J =−2 in 174Yb and mF =+1

2
→m′′F =−3

2
in 171Yb. Green: A σ̂+ probe

excites only mJ = 0→m′J = +2 in 174Yb and mF =−1
2
→m′′F = +3

2
in 171Yb. For each

isotope the excited state Zeeman structure is clearly resolved, but note that at this magnetic
field strength the peak for 171Yb, m′′F =−3

2
over laps with the one for 174Yb, m′′F =+2. The

relative line strengths (in the absence of optical pumping) are determined by the Clebsch-
Gordan coefficients for each transition; these in turn are observed more or less efficiently
according to the square of the optical intensity that satisfies the corresponding selection
rules.

probe polarization. When the probe beam is weighted slightly towards σ̂−, the m′F =−2

sublevel is probed more efficiently and we observe a slightly higher peak than form′F =−2;
if instead the probe is weighted towards σ̂+, then the opposite situation obtains. Fits to this
data provide a quantitative indication of how well the probe polarization must be known to
identify a nuclear polarization signal of a given size.

3.3.2 Analysis of Overlapping Resonance Lines

The radiative lifetime of the 3D2 state is roughly half that of the 3P1 state, with the result
that a Lorentzian function is an even better approximation than in the one-photon case. We
now discuss the extraction of fit parameters when several resonance lines corresponding to
different isotopes overlap, and the magnetic field and probe polarization are not adjusted
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Figure 3.18: Zeeman structure of the 172Yb 5d6s 3D2 state in a magnetic field, where the
probe polarization is ε̂ = aσ̂− + bσ̂+: (a) nearly linear probe polarization with a & b,
(b) pure linear probe polarization (a= b within experimental limitations), (c) nearly linear
probe polarization with a . b. Only three of the five 3D2 magnetic sublevels are excited,
since angular momentum conservation cannot be satisfied for a ∆m=±1 transition where
two circularly polarized photons are absorbed. When the probe polarization has no π̂
component, there is no two-photon E1 amplitude that connects the state mJ = 0 with any
of m′J = 0 or m′′J = ±1 (see figure 3.19). Since the even isotopes of ytterbium have no
nuclear spin, these spectra provide a reference baseline in which optical pumping has no
effect on the ground state. As such, they are a sensitive means of calibrating the effects
of imperfect probe polarization. Green lines show a fit to the function g(ω) defined in
equation 3.9 (see table 3.4 for the fit parameters). Red lines show the m′′F =−2 component,
i.e. g(ω)|A2=A3=0. Blue lines show the m′′F = 0 component, i.e. g(ω)|A1=A3=0. Pink lines
show the m′′F = +2 component, i.e. g(ω)|A1=A2=0. The horizontal-axis frequency offset is
measured with respect to 371.022 THz.
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Figure 3.19: Two-photon excitation pathways in ytterbium from 6s2 1S0 → 5d6s 3D2 with
light propagating along the quantization axis, in isotopes with (right) and without (left)
nuclear spin. The transition can be driven driven by σ̂− (red) or σ̂+ (green) polarization,
or any superposition of the two – such as the linear polarization σ̂=(σ̂−+σ̂+)/

√
2 shown

in blue – but the polarization determines which Zeeman states can participate, through
selection rules resulting from conservation of angular momentum. In the I = 0 isotope
shown at left, the levels which do not participate in any of these pathways are dashed; to
involve these requires a finite component of π̂ polarization, which is impossible when the
probe wave vector is parallel to the quantization axis. Note that all Zeeman sublevels can
be involved when the nuclear spin is nonzero, but that each excited sublevel can only be
reached from one ground state sublevel.

to isolate one component for each isotope. Figure 3.20 shows fluorescence spectra for the
same transitions that are shown in figure 3.17, now with an elliptically polarized probe
beam and smaller magnetic field. It is not possible by visual inspection to identify the
different excited state Zeeman levels, but this can be accomplished within a certain range
of magnetic fields and probe polarizations by using a fit function

h(ω) = g(ω) +
B1

1 +
(
ω−ω′0−k∆/2

γ′

)2 +
B2

1 +
(
ω−ω′0+k∆/2

γ′

)2 , (3.10)

where g(ω) is given by equation 3.9, and k = gF/2gJ ≈ 0.6 is a fixed scaling factor
that accounts for the different magnetic moments of the two isotopes. The scaling factor
k is calculated a priori from a measured value of gJ for the 3D2 levels [3] and the various
quantum numbers that are coupled by the F = 1

2
→ F ′′ = 3

2
hyperfine component of the

171Yb transition. We also attempted an analysis using the fit function
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Sub-figure A0 A1 A2 A3 B1 B2 ω0 ω′0 − k∆ ∆
(Hz) (Hz) (Hz) (Hz) (Hz) (MHz) (MHz) (MHz)

(a) 19.5 14.2 129 397 2 78 52.6 84.2 10.1
(b) 20.1 143 357 803 0 159 49.7 73.3 14.7

Table 3.5: Fit parameters for the data shown in figure 3.20; the fit constants are defined
by the function h(ω) given in equation 3.10. It should be noted that ω′0 − k∆ (not ω′0) is
the center of gravity for the 171Yb transition, since only the mF = +1

2
,+3

2
components are

included in the fit.

Sub-figure A0 A1 A2 A3 B1 B2 ω0 ω′0 − k∆ ∆
(Hz) (Hz) (Hz) (Hz) (Hz) (MHz) (MHz) (MHz)

(a) 351 28 91 289 23 46 46.3 84.1 12.9
(b) 354 39 117 327 31 28 47.7 82.3 11.2

Table 3.6: Fit parameters for the data shown in figure 3.21; the fit constants are defined
by the function h(ω) given in equation 3.10. It should be noted that ω′0 − k∆ (not ω′0) is
the center of gravity for the 171Yb transition, since only the mF = +1

2
,+3

2
components are

included in the fit.

j(ω) = g(ω) +
B1

1 +
(
ω−ω′0+3k∆/2

γ′

)2 +
B2

1 +
(
ω−ω′0+k∆/2

γ′

)2

+
B3

1 +
(
ω−ω′0−k∆/2

γ′

)2 +
B4

1 +
(
ω−ω′0−3k∆/2

γ′

)2 , (3.11)

which includes all four excited levels of 171Yb, but the extra degrees of freedom did not
result in a better fit. This is because in these data, the contributions from m′′F =−1

2
,−3

2
are

overwhelmed by the much stronger 174Yb transitions at the same frequencies. We therefore
proceed by using h(ω) to isolate the contribution from 171Yb.

Figure 3.21 shows data obtained in a similar configuration, where a 556 nm pump beam
was also applied. Even with normal-incidence windows, the background due to scattered
pump light entering the PMT accounts for quite a large fraction of the recorded fluorescence
spectrum. Although this background is not polarization-dependent, it does represent a
major statistical limitation. No clear difference is apparent between the data sets with σ̂−

and σ̂+ pump beams, indicating a need to average data from multiple fluorescence spectra
in each configuration to reduce the impact of statistical fluctuations.

Even with the pump background mitigated by beam shaping to reduce diffraction, the

88



20 40 60 80 100 120
0

200

400

600

800

1000

MHz offset from 371.022THz

C
o
u
n
t 
ra

te
 (

H
z
)

(a)

20 40 60 80 100 120
0

200

400

600

800

1000

MHz offset from 371.022THz

C
o
u
n
t 
ra

te
 (

H
z
)

(b)

20 40 60 80 100 120
−150

−100

−50

0

50

100

150

200

MHz offset from 371.022THz

R
e
s
id

u
a
l 
c
o
u
n
t 
ra

te
 (

H
z
)

(c)

20 40 60 80 100 120
−150

−100

−50

0

50

100

150

200

MHz offset from 371.022THz

R
e
s
id

u
a
l 
c
o
u
n
t 
ra

te
 (

H
z
)

(d)
measured fluorescence

fit to measurement
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F

= −1
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Figure 3.20: The upper figures (a) and (b) show fluorescence spectra in the absence of
an optical pumping field, with an arbitrary probe polarization and at two relatively large
(different) magnetic field strengths. The signal-to-noise ratio is high enough that the iso-
topes 174Yb (compound peak between 30MHz and 70MHz) and 171Yb (smaller peaks near
90 MHz) can be readily distinguished, and their Zeeman structure analyzed in some de-
tail; the green line represents a fit to the function h(ω) defined in equation 3.10 (see table
3.5 for the fit parameters). The lower figures (c) and (d) show the same data, with the
fit function for the 174Yb peaks subtracted off; the green lines show h(ω) evaluated with
A0 =A1 =A2 =A3 =0, and the other parameters as in table 3.5.
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Figure 3.21: The upper figures show fluorescence spectra of 174Yb and 171Yb, with an
optical pumping field of (a) σ̂+ polarization and (b) σ̂− polarization applied to the atoms
before they enter the probe region. The signal-to-noise ratio is considerably worse than
in figure 3.20, owing largely to light from the pump beam entering the PMT. The lower
figures (c) and (d) show the same data with the contribution from 174Yb subtracted using
the fit, as in figure 3.20. Fit parameters are given in table 3.6, according to the function
h(ω) defined in equation 3.10.
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available laser power at 808 nm and atomic beam number density result in a relatively low
scattering rate. In order to correctly average data from multiple measurements, during and
between which statistical fluctuations may be considerable, we take advantage of the nu-
clear spin zero isotope 174Yb. Since only the isotopes with nuclear spin can be affected by
optical pumping, we look for a modulation of the 171Yb fluorescence amplitude that corre-
lates with the pump polarization – normalized to the amplitude of the 174Yb fluorescence
that was measured in the same scan. The experiments with 172Yb discussed earlier were
critical to the interpretation of these data, since it is necessary to understand the influences
of magnetic fields and probe polarization on the fluorescence spectra of a spin zero isotope
independently, before effectively using one as a calibration standard.

Another limitation, which we have not yet discussed, is related to the precision with
which the laser frequency can be controlled and measured. All of the data for two-photon
fluorescence spectra with optical pumping were measured with the wavemeter, at the same
time as it was measuring (and stabilizing) the 556 nm pump beam. This reduces the fre-
quency with which each beam can be sampled, and the multimode fiber coupler used to
switch between inputs is known to adversely affect the frequency resolution of the device.
This complication adds significant frequency uncertainty (of order 5-10 MHz) to the mea-
surement, which can be avoided if one of the lasers is independently measured or stabilized
to a separate reference. It is presently unclear if the frequency resolution of the measure-
ment, or the pump beam background, constitutes a more severe limitation.

3.3.3 Nuclear Polarization Dependence

Figure 3.22 shows the result of an attempt to measure nuclear polarization produced by
556 nm optical pumping of 171Yb in the fluorescence spectra of the F = 1

2
→F ′= 3

2
two-

photon transition. This required averaging roughly 30 separate scans, with an independent
normalization to the 174Yb amplitude for each scan. The signal-to-noise is poor, but the
relative positions of the data points for each pump polarization are consistent with nuclear
spin polarization – unfortunately, the sign is the opposite of what would be expected given
the applied pump polarization. With more data and improved laser stability, we might
reasonably expect to see something like the signal shown in figure 3.14.

3.4 Further Thoughts and Improvements

A definitive demonstration of nuclear polarization dependence in the two-photon scattering
rate would be radio-frequency quenching of the two-photon polarization signal. An exper-
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Figure 3.22: Normalized amplitude of the 171Yb F = 1
2
→ F ′ = 3

2
resonance peak, as a

function of pump beam polarization (normalized to the amplitude of the neighboring 174Yb
resonance peak). (a) Probe polarization is σ̂−, corresponding to the red data series in figure
3.17, which is a good representation of the type of data sets that were averaged to produce
the present plot. (b) Probe polarization is σ̂+, corresponding to the green data series in
figure 3.17, which is a good representation of the type of data sets that were averaged
to produce the present plot. The horizontal axes show the voltage applied to the liquid
crystal waveplate in the pump beam (see figure 3.11). The three data points on each plot
correspondingly show (σ̂−,σ̂+,σ̂) pump polarizations from left to right.

iment attempted along these lines with pulsed lasers and rubidium (see chapter 4) indicates
that magnetic shielding for the PMT may be required.

A significant advantage of two-photon spectroscopy is that the detected fluorescence
wavelength can be different from the excitation wavelength; it follows that they can be
separated by spectral bandpass filters, and background noise due to pump or probe light
essentially eliminated. This advantage is not exploited in the experiments presented, largely
as a matter of convenience; we could equally well envision an experiment in which optical
pumping is done using the 399 nm 1S0 → 1P1 transition, with detection at 556 nm (or
vice-versa). A future incarnation of this experiment could use a diode laser at 399 nm
for optical pumping, with the existing detection apparatus. In practice, we were able to
reduce the pump background to manageable levels by fiber-coupling the 556 nm pump
beam and taking advantage of reduced diffraction from the resulting TEM00 spatial mode.
In effect, we have replaced spectral filtering with spatial filtering: by eliminating extraneous
optical paths to the PMT and reducing the intensity of scattered or diffracted pump light,
the background can be reduced to manageable levels.

Note that radiative decays following two-photon excitation typically proceed in at least
two cascaded steps, with the final steps involving E1 transitions that couple to the ground
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state. In ytterbium the first cascade photons (∼1479 nm) have too long a wavelength to be
conveniently detectable, so we detect the final cascade photons, which radiate on the same
transitions that are most convenient for optical pumping out of the ground-state. In the
noble gases, the more convenient wavelength is the first emitted photon, since the strong
E1 transitions coupling to the ground state are all in the vacuum ultraviolet. Thus, this
particular limitation is generally avoidable and we do not expect to encounter it at all in
noble gas magnetometry.

Two other versions of these experiments are possible with relatively minor modifica-
tions of the laser apparatus:

1. The pump and probe beams can be swapped, with the intention of detecting at 556 nm
the signature of two-photon optical pumping (TPOP) at 808 nm. This is likely to be
a weak effect, but the higher signal-to-background for the 556 nm probe / 808 nm
pump combination may prove advantageous. It should also be noted that TPOP is
expected to be a weak effect, but the polarization of either excited state produced by
σ̂± radiation (F ′′= 3

2
,m′′F =±3

2
) is transferred to the ground state with unit efficiency

due to angular momentum conservation.

2. If the 399 nm 1S0 − 1P1 transition is used for optical pumping, the 556 nm pump
background is no longer a limitation. Unfortunately, in our lab the only presently
available source of 399 nm light is frequency-doubled Ti:sapphire, which is not com-
patible with using the Ti:sapphire laser to generate 808 nm light for the two-photon
probe.

Figures 3.20 and 3.21 clearly illustrates the need for careful beam shaping and light
blocking around the PMT; this becomes a more severe limitation in experiments with pulsed
lasers where the signals obtained so far are smaller than in the cw case. The size of any
apertures in the beam path must be chosen to minimize diffraction, and the spatial mode of
the pump beam should be of high quality. Coupling the 556 nm beam through an optical
fiber produces a significant improvement of the spatial mode, but additional measures may
prove necessary if this remains a limitation. In chapter 4 we also present an example where
the 808 nm probe light – although suppressed by at least six orders of magnitude – was still
detectable through the 556 nm bandpass filter, at a level that overwhelmed the fluorescence
signal until beam shaping was improved.
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Table 3.7: Naturally occurring isotopes of mercury [4]

Isotope Abundance (%) Nuclear Spin Nuclear Magnetic Moment (µN )
196Hg 0.15 0+
198Hg 10.1 0+
199Hg 17.0 1/2- +0.5059
200Hg 23.1 0+
201Hg 13.2 3/2- -0.5602
202Hg 29.65 0+
204Hg 6.85 0+

3.5 CW Lasers and Vapor Cell Spectroscopy

3.5.1 Mercury

Narrow-band diode lasers are commercially available to produce light for spectroscopy of
the mercury intercombination line at 253.7 nm (Toptica TA-FHG pro). These are typically
made by generating the fourth harmonic of a near-infrared seed laser in two successive res-
onant doubling cavities. The layout for such a laser is essentially the same as that shown
in figure 3.8, with the components after the second isolator duplicated for fourth harmonic
generation. The second doubling stage in such a system typically uses BBO, since phase
matching with LBO is not possible at such short wavelengths. The temperature and humid-
ity requirements for the second doubling stage are also stringent, and the crystal is prone
to irreversible photodegradation from the ultraviolet light, with the result that it must be
periodically moved to re-optimize output power using an undamaged region.

Mercury shares many of the interesting and useful features of ytterbium, and serves in
some respects as a test system for deep-ultraviolet spectroscopy. The 253.7 nm intercom-
bination line is analogous to the 556 nm transition in ytterbium (and is actually a stronger
transition in mercury, due to more severe violations of LS coupling in the heavier atom).
Conveniently, 253.7 nm also lies between two possible two-photon wavelengths in xenon;
for this reason, our first attempts to find the xenon transition were based on modifications
of the laser used for mercury spectroscopy.

In figures 3.23 and 3.24 we present a Doppler-free dichroic atomic vapor laser lock
(Doppler-free DAVLL [79–81]) at 253.7 nm, based on spectroscopy of a thin mercury vapor
cell. The fit function used to roughly model the error signal is a difference of Gaussians;
since the actual frequency offset depends nonlinearly (and hysteretically) on the applied
voltage V , it should not be surprising that the fit appears less than perfect. The stability
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Figure 3.23: Error signal resulting from circular dichroism in 199Hg (left) and 201Hg (right)
in a vapor cell, as a function of the offset voltage applied to an intracavity piezoelectric
transducer. Two photodiodes are used to monitor the intensities of transmitted σ̂+ and σ̂−

light, which are normalized to the total power and subtracted. The ∼ 1 MHz width results
from an applied magnetic field along the probe axis; the dispersive lineshape arises from
subtracting two nearly-overlapping absorption peaks. The laser frequency can be locked
to either zero crossing, and the slope at the lock point determines the bandwidth of the
lock. The blue curve is a fit that assumes Gaussian absorption lineshapes. (Data and figure
produced in collaboration with Bernd Taubenheim.)
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(a) (b)

Figure 3.24: Differential transmission signal through a mercury vapor cell (σ̂+ compared
to σ̂−): (a) without and (b) with a Doppler-free DAVLL system providing active frequency
stabilization. The intensity modulation in (a) is a result of free-running frequency drift near
resonance. (Data and figure produced in collaboration with Bernd Taubenheim.)

of the differential transmission signal in figure 3.24(b), in comparison to the free-running
case, provides a good indication that the lock is effective. Based on the observed variation,
we can roughly estimate that the laser frequency has a maximum excursion of less than 1
MHz from the line center.

3.5.2 Xenon

The 1S0→ 2[5/2]2 two-photon transition in xenon, which occurs at an optical wavelength
of 256 nm, is a particularly attractive candidate for optical magnetometry. This is well
outside the vacuum ultraviolet, but still not trivial to produce. We were able to obtain close
to 1 mW of power at 256 nm by detuning the 253.7 nm laser discussed above, and then
re-aligning and locking both doubling cavities at 256 nm. This output power is quite low
in comparison to the several milliwatts produced at 253.7 nm, and the loss is attributable
to the narrow design bandwidth of the commercial system. Figure 3.26 shows the output
power in each doubling stage as a function of crystal temperature.

We ultimately found the 256 nm xenon transition by using a commercial Ti:sapphire
system (M Squared SolsTiS) with external mixing and doubling modules (M Squared
GRUVY and ECD-X-Q). The tunable Ti:sapphire output is mixed with fixed-wavelength
1550 nm light from a fiber laser, using a periodically-poled lithium niobate PPLN crystal
cut for sum-frequency generation. The output of this mixing module is then frequency-
doubled in a resonant cavity using BBO, to produce light at or near 256 nm. The 256 nm
output is tunable via the Ti:sapphire, and can be broadly scanned without negatively affect-
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Figure 3.25: Level structure of atomic xenon, showing two possible two-photon transitions
for magnetometry. The measurements reported here focus exclusively on the 256.0 nm
transition and the 905 nm decay branch, but analogous measurements are possible using
other wavelengths.

Table 3.8: Naturally occurring isotopes of xenon [4]

Isotope Abundance (%) Nuclear Spin Nuclear Magnetic Moment (µN )
128Xe 1.91 0+
129Xe 26.4 0+
130Xe 4.1 1/2+ -0.7768
131Xe 21.2 0+
132Xe 26.9 3/2+
134Xe 10.4 0+
136Xe 8.9 0+
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Figure 3.26: Measured doubling efficiencies as a function of temperature, in the second-
and fourth-harmonic generation stages of a Toptica TA-FHG pro laser designed for mercury
spectroscopy at 253.7 nm. For these data the laser is tuned to operate ∼ 2 THz away
from the design wavelength, in order to search for the 256 nm two-photon resonance in
xenon. The red curve shows temperature dependence of the conversion efficiency in the first
doubling stage, and the green data points show the same measurement performed on the
second doubling stage (after optimizing the first doubler). For comparison, the blue curve
shows a repeated measurement of the green data with the doubling cavity rapidly scanning;
this averages out large fluctuations in the vicinity of certain problematic frequencies, and
provides some indication of the phase-matching efficiency.

ing the cavity locks. It was necessary to purge the SolsTiS module with dry nitrogen in
order to obtain stable operation at 764.5 nm, which is the Ti:sapphire wavelength required
to produce 256 nm in this scheme. The best results were obtained when the GRUVY mod-
ule was also purged at the same time. Even so, the 256 nm output power is a strong function
of wavelength due to the transferred effect of molecular oxygen resonances in the infrared.

The configuration of critical experimental components is shown in figure 3.27. The
optical setup is very similar to the one used for the rubidium measurements described in
chapter 4, with appropriate replacements for optical coatings, etc. In the present experi-
ment, the chopper wheel is controlled by an external function generator, and this driving
signal is also used to trigger photodiode measurements so that the 256 nm intensity monitor
is synchronized with the photon counting data.

Despite using a fully blocked 905 nm bandpass filter with the PMT, nearly half of the
detected photon counts on resonance are attributable to 256 nm laser light. We therefore
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monitor the laser power with a photodiode, and use this data to normalize the fluorescence
spectra point by point. The optical chopper wheel triggers the photon counter as well, and
the “bright” and “dark” channels are subtracted to minimize the impact of non-laser back-
ground light. The photodiode’s output is recorded using a DAQ card (National Instruments
M-Series USB DAQ), and the values during each trigger window are averaged and stored
with the photon counting data. A representative, fully normalized spectrum is shown in
figure 3.28.

We have verified to within 1% that the fluorescence intensity scales, as expected, with
the square of the 256 nm intensity. Future work could improve the signal-to-noise ratio
by reducing the laser background (and possibly replacing the PMT with a more sensitive
InGaAs APD or other detector), characterize the effects of probe polarization and applied
magnetic fields, and examine the transition at higher spectral resolution (e.g., at lower
atomic densities or in a true Doppler-free configuration). We have also prepared cells
containing 129Xe and Rb, and a natural next step is to polarize the xenon using SEOP and
investigate effects of nuclear spin polarization on the two-photon transition rate. If static
longitudinal polarization can be detected using the two-photon probe, one can use pulsed
NMR to initiate precession and employ the two-photon probe as a real-time monitor of the
precession phase (as envisioned for EDM co-magnetometry). It may also be productive to
investigate the 252.5 nm two-photon transition, which falls within the tuning range of the
current laser configuration.
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(M Squared SolsTiS/GRUVY/ECD-X-Q)

Figure 3.27: Simplified block diagram of the cw xenon experiment, in the configuration
used to produce figure 3.28. Magnetic field coils (not shown) are mounted around the cell
and blackout box.
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Figure 3.28: Xenon fluorescence signal at 905 nm, as a function of excitation wavelength.
The cell used to obtain these data contained approximately 1.5 bar of natural xenon. Ap-
proximately 200 mW of power at 256 nm was used; the nearly constant background is due
to laser light entering the PMT through the 905 nm bandpass filter. Weak modulation of
the background is attributable to a molecular oxygen resonance at 764.5 nm, which reduces
the Ti:sapphire power available to produce 256 nm light.
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CHAPTER 4

Experiments with Pulsed Lasers

High spectral resolution and dispersion control are possible with ultrafast lasers, and the
relative ease of producing high power ultraviolet probe light compensates for a moderate
increase in technical complexity. The essential difficulty is that, while short optical pulses
can have very high peak power (and thus high efficiencies for frequency conversion and
multiphoton excitation), this comes at the cost of a corresponding increase in (frequency)
bandwidth. For pulse lengths in the range of a few picoseconds to a few femtoseconds, the
pulse bandwidth is between 100 GHz and 100 THz, with the result that most of the laser
power lies outside the transition linewidth for degenerate photons.

We have nevertheless obtained two-photon fluorescence signals from atomic ytterbium
(picosecond and femtosecond pulses) and rubidium (picosecond pulses only); these mea-
surements are presented in the remainder of this chapter. The scattering rates are low com-
pared to the cw experiment, and no sensitivity to ground state polarization was observed.
However, we expect a considerable enhancement of the signal with additional laser stabi-
lization (discussed in chapter 4.5.1) and a corresponding sensitivity to hyperfine structure
(which was not resolved in the pulsed experiments reported here). Techniques for disper-
sion compensation are explored in the context of the femtosecond ytterbium experiment,
and will be particularly relevant to future experiments where the nonlinear crystals used to
produce ultraviolet pulses are expected to produce significant group delay dispersion.

We also survey some proposed improvements to the experiments discussed here, and
extensions of the techniques to other atomic species and broader applications. Section 4.5.1
considers possible improvements to the pulsed ytterbium experiment, in particular meth-
ods for stabilizing the 808 nm picosecond laser. A similar method of stabilizing picosec-
ond puses for xenon spectroscopy is proposed in section 4.5.2, together with a frequency-
tripling scheme to produce modelocked pulses at 256.0 nm using a Ti:sapphire oscillator.
Section 4.5.3 discusses applications of two-photon magnetometry in experiments seeking
to measure the nuclear EDM of certain radon isotopes; relatively little is known about the
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optical spectrum of radon, and high resolution spectroscopy with a pulsed laser would be a
powerful tool for investigating it.

4.1 Scaling of Excitation Efficiency with Pulse Parameters

Suppose we have a laser source whose spectral intensity distribution at the experiment is

Iω(ω) =
I0

Γ
√
π
e−

(ω−ωc)2

Γ2 , (4.1)

i.e., one with a fixed total intensity I0. The power spectrum is a Gaussian centered at the
carrier frequency ωc, with full width at half maximum (FWHM) 2

√
ln 2Γ. A Lorentzian

spectrum can be a better model when only a single axial mode of the laser is excited, but for
broadband pulses a Gaussian or squared hyperbolic secant is typically more appropriate.
Suppose also that the atomic density of states associated with absorption of two photons of
frequency ω is

L(ω) =
N

γ
√

2π
e
− (ω−ω0)2

2γ2 , (4.2)

where N is the total number of atoms, ω0 is the central resonance frequency, and the
FWHM of the distribution is 2

√
2 ln 2γ. We have chosen a Gaussian distribution of the

density of states for computational simplicity, but we could also use the Lorentzian distri-
bution

L′(ω) =
Nγ

2π

1

(ω − ω0)2 + γ2

4

. (4.3)

The first case is more appropriate to inhomogeneous broadening mechanisms (e.g., Doppler
broadening), whereas the second is better suited to homogeneous mechanisms (such as the
natural radiative linewidth). A Voigt lineshape, obtained from a convolution of the two
with different width parameters, is yet a better approximation (especially when Γ ≈ γ).

The efficiency of the field at driving two-photon transitions is well characterized by the
overlap integral S (which is proportional to the resulting excited state population):

S =

∫ ∞
−∞

∫ ∞
−∞

I(ω1)I(ω2)L

(
ω1 + ω2

2

)
dω1dω2 (4.4)

=

∫ ∞
−∞

L(ω)

∫ ∞
−∞

I(ω −∆)I(ω + ∆) d∆dω (4.5)

=
NI2

0√
2π(Γ2 + 4γ2)

e
− 2(ω0−ωc)

2

Γ2+4γ2 , (4.6)
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Figure 4.1: Intensity spectrum of the optical field, atomic absorption lineshape, and fre-
quency parameters appearing in the overlap integral used to estimate the two-photon ab-
sorption rate. We can consider the integration parameters to be ω1 and ω2, or (alternatively)
ω and ∆.

where ω = (ω2 + ω1)/2 and ∆ = (ω2 − ω1)/2. We have assumed that the intermediate
detunings ωi − ω (where ~ωi is the energy of a real atomic level) are large compared to
either of the widths γ,Γ. Note that resonant excitation is possible whenever the overall

detuning is close to zero; this accounts for the differing arguments between the first and
second factors of intensity in either integral expression for S. Two relevant limits can be
obtained from this result; they correspond to

γ � Γ (broad-line excitation field) (4.7)

γ � Γ (narrow-line excitation field) . (4.8)

In either case, the excitation scales as

NI2
0

γmax
√

2π
e
− (ω0−ωc)

2

γ2
max , (4.9)

where γmax is the larger of Γ or 2γ. In particular, when the carrier frequency is tuned to
resonance (ω0 − ωc = 0) we have

S ∝

{
Γ−1 (γ � Γ)

γ−1 (γ � Γ)
, (4.10)

which illustrates that in either case the excitation scales inversely with the largest width
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parameter. For broad-line excitation, corresponding to most pulsed laser sources, we there-
fore expect the excitation from a single pulse to scale linearly with the pulse duration. The
case of narrow-line pulsed excitation may be considered to include cw lasers, where the
“pulse width” is really the transit-broadened field spectrum due to a finite interaction time.

Note that the peak squared spectral intensity is I2
0/πΓ2, so increasing the total inten-

sity without changing the pulse width still achieves a quadratic gain with I0. However,
the higher peak intensity achieved by shortening a temporal pulse with fixed energy does
not, by itself, offset the loss in excitation due to increased spectral bandwidth. This loss
can be recovered by preserving phase-coherence of the carrier wave between successive
pulses, with the result that the excitation amplitudes from different pulses can interfere con-
structively. The time-domain picture of interpulse phase coherence corresponds to phase-
locking the excited axial modes of the laser resonator in the frequency domain. Since in the
coherent case we add amplitudes rather than probabilities to obtain the excited state pop-
ulation, a considerable enhancement of the excitation occurs if N phase-coherent pulses
contribute before the excitation decays. The enhancement factor is N2 when compared to
a single pulse, or N when compared to an incoherent pulse train. Additionally, the char-
acteristic “comb” spectrum associated with this periodic time dependence permits much
higher frequency resolution than single-pulse excitation, since the limiting frequency scale
is defined by the spacing between modes rather than the width of the entire spectrum (see
section 2.3).

In many situations relevant to two-photon excitation, the absorption of one additional
probe photon is sufficient to ionize the atom. It is often desirable (particularly in EDM ex-
periments) to achieve a high two-photon excitation rate at the same time as a low ionization
rate; we will suppose that the ionization probability is proportional to both the excited state
population and the laser intensity I0. In this case, a single pulse with intensity I0 produces
roughly the same number of excited atoms as N phase-coherent pulses of intensity I0/N .
However, the single pulse produces a number of ions proportional to I3

0 , while the scaling
for the train of weaker pulses is approximately

nions ∝
I3

0

N2

N∑
n=1

n2 = I3
0

[
1

3
+

1

2N
+

1

6N2

]
, (4.11)

approaching I3
0/3 in the limit of many pulses. Moreover, the ions produced by the pulse

train are spread out in time over a considerably longer interval – during which the ionization
rate per pulse is significantly lower. In applications where a large number of simultaneous
ionizations may cause problems (but a lower and more uniform ionization rate may not),
this can be a crucial advantage.
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In terms of the apparatus required for nonlinear frequency mixing, it is substantially
easier to produce high optical power1 with pulsed rather than cw lasers, owing to the high
peak intensities available from short optical pulses. For this reason nonlinear frequency
mixing of pulsed lasers is typically done without resonant cavity enhancement, which con-
siderably simplifies the optical and electronics details of the apparatus. It also turns out that
the dominant mechanisms for optical damage scale with the average laser intensity rather
than peak intensity, and the situation concerning long-term deterioration of optics is not
appreciably worse than in the cw case. Finally, pulsed excitation introduces new degrees
of freedom (pulse timing, chirp, and overlap), which can be exploited experimentally to
regulate different sensitivities in their application to magnetometry.

4.2 Ytterbium Atomic Beam: Picosecond Pulses

The atomic beam apparatus is the same one discussed in chapter 3 (see figures 3.3 to 3.7).
The 556 nm pump laser for nuclear spin polarization also remains the same, although no
sensitivity of the two-photon scattering rate to ground state nuclear spin polarization was ul-
timately observed with a pulsed probe. (The absence of a polarization signal is attributable
to instability of the probe laser spectrum, resulting in a stochastic average over different iso-
topes and hyperfine transitions that reduces the visibility of population differences due to
optical pumping.) The configurations for experiments with pulsed probe lasers are detailed
in figures 4.2, 4.3, 4.9 and 4.11, and discussed below.

The picosecond pulsed laser is a Ti:sapphire oscillator (Spectra-Physics Tsunami 3960-
X1BB), which in the configuration used here (see figure 4.3) produces 2 ps pulses with a
repetition rate of∼ 80 MHz and an average power of 1-2 W. It is actively modelocked with
an acousto-optic modulator (AOM) driven near the repetition rate, and the pulse length is
controlled by a Gires-Tournois interferometer (GTI) at one end of the cavity, which intro-
duces negative group velocity dispersion to compensate for the normal dispersion resulting
from other cavity optics. Other pulse lengths can be achieved by using a GTI with a differ-
ent dispersion profile. The cavity length and dispersion are not stabilized, with the result
that the repetition rate and carrier-envelope offset phase are prone to drift. We will discuss
schemes for stabilizing these degrees of freedom in section 4.5.1, since instability of these
parameters appears to be the main limitation presently affecting the experiment.

The carrier frequency is tunable over a wide range via rotation of an intracavity bire-
fringent filter. This, the position of the GTI, and the vertical alignment of the output coupler
are the principal degrees of freedom available for frequency adjustments; all must currently

1Both average and peak.
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Figure 4.2: Block diagram of the experimental configuration used for picosecond two-
photon spectroscopy of ytterbium; the atomic beam and 556 nm laser are discussed in
chapter 3. The 808 nm probe beam is produced by a commercial Ti:sapphire oscillator
(Spectra-Physics Tsunami), pumped by 10 W at 532 nm (Coherent Verdi V-12). The beam
passes through a LBO frequency doubler, optical isolator, and optical chopper wheel. Pick-
off beams are used to monitor the pulse train (on an APD) and the power spectrum (on a
CCD spectrometer), while the intensity of the 404 nm second harmonic is used to evaluate
modelocking stability. (Future experiments will use an error signal generated by the second
harmonic beam to stabilize the fundamental frequency; see section 4.5.1). The optical
isolator is required for stable modelocking since back-reflections from normal-incidence
optics tend to destabilize the resonator. A monitor photodiode behind the chamber is used
to track the phase of the optical chopper for gated photon counting, and a lens in front is
used to increase the intensity incident on the atomic beam.
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Figure 4.3: Schematic diagram of the Spectra-Physics Tsunami 3960-X1BB cavity. Pump
light at 532 nm (9-10 W) is coupled into the cavity with a Brewster window and steering
and focusing mirrors. The cavity is a folded linear configuration, with a Gires-Tournois
interferometer (GTI) at one end and the output coupler mirror providing the second bound-
ary. The GTI can be adjusted to change the amount of negative group velocity dispersion
(GVD), thereby regulating the pulse length within approximately a factor of two. The car-
rier frequency is adjusted by rotating a three-plate birefringent filter about its optical axis.
External adjustment knobs for the GTI, birefringent filter, and output coupler are provided
for optimization without opening the cavity’s protective cover. Active modelocking is ac-
complished using an acousto-optic modulator driven near the repetition rate of ∼ 80 MHz,
and an error signal is produced using the output of a fast photodiode monitor whose align-
ment can be adjusted by opening the cavity. The control electronics is a Spectra-Physics
Model 3955 driver, which provides coarse and fine adjustments of the modelocker phase
(required for compensation when cable lengths are changed).

be tuned manually, although in future experiments we plan to introduce a piezoelectric
transducer to modulate the cavity length (thereby stabilizing the repetition rate). The bire-
fringent filter provides a coarse selection of the carrier frequency, which is finely tuned by
position and orientation of the GTI and the output coupler. However, these three degrees of
freedom must also coincide with a cavity alignment where modelocking occurs, and this is
not a trivial requirement. An additional degree of freedom exists to regulate modelocking
– the phase of reference signal driving the AOM – but is not especially useful as a tuning
parameter, since it does not significantly affect the carrier frequency and is not strongly
coupled to any other tunable degree of freedom.

Modelocking can be diagnosed in three ways: second-harmonic generation (SHG) effi-
ciency, spectral bandwidth, and pulse train stability. Qualitatively the simplest is to measure

107



the output power of the doubler at the second harmonic frequency, since this increases by
approximately two orders of magnitude when modelocking is established (with a corre-
sponding decrease of the infrared power). When attempting to achieve modelocking it can
also be sometimes easier to observe the transient bright flash of blue light, than to notice
a similarly rapid variation of the intensity spectrum or pulse train. Once modelocking is
achieved, it is typically necessary to fine tune the carrier frequency via small adjustments of
the GTI and output coupler. The LBO frequency doubler (Spectra-Physics Model 3980) is
a passive device operated in a single-pass configuration. Except for rotating the LBO crys-
tal to re-optimize phase-matching when the output frequency of the Tsunami is changed
significantly, no adjustments are required in the course of routine use.

Other diagnostics for modelocking include the shape of the power spectral envelope
observed on the CCD spectrometer (Ocean Optics HR4000); see figure 4.6 for a similar
spectrum at the resonance wavelength for a two-photon transition in rubidium. It appears
roughly Gaussian with a width of ∼0.5 nm when properly modelocked. The peak spectral
intensity is substantially lower than in the cw regime, since the output power is roughly the
same but the spectral bandwidth is considerably larger. We similarly observe the slowly-
varying time-domain envelope of the pulse train by using an avalanche photodiode (APD),
and measure the repetition rate by tracking the APD signal with a frequency counter (HP
51358). The pulse amplitude should not visibly fluctuate when monitored with an oscillo-
scope, and the measured repetition frequency should be stable below 1 ppm (a few tens of
hertz at 80 MHz) on the frequency counter.

Figure 4.4 shows a typical fluorescence signal from the atomic beam, where the count
rate detected by a photomultiplier tube (PMT) is correlated with the presence or absence
of ∼ 2 ps laser pulses at 808 nm. The signal appears when both the atomic beam and the
probe laser are present, but vanishes when either is turned off or the probe laser is detuned
from resonance. We extrapolate a Gaussian beam waist of approximately 100 µm at the
atomic beam, meaning the thermal atoms interact with the probe field for approximately
330 ns (i.e., an average of 27 pulses). The associated transit-time broadening is 3 MHz,
which also corresponds to the apparent resolution of an individual comb tooth in the frame
of a moving atom. Since the inverse interaction time is roughly twice the excited state
radiative linewidth of 2 MHz, it is a reasonable approximation to neglect atomic relaxation.
(Alternatively, roughly 37 pulses are absorbed for every 1/e decay in the excited state
population.) The dominant frequency scale – apart from the optical carrier frequency –
is the bandwidth of the pulsed field (∼ 250 GHz), followed by the Voigt linewidths of
the individual isotopic and hyperfine transitions (tens of MHz mainly due to the residual
Doppler effect, as inferred from cw experiments performed under similar conditions; see
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Figure 4.4: Two-photon fluorescence signal from the Yb atomic beam, excited by 2 ps
pulses at 808 nm. Seven 100 ms bins are averaged for each data point, and the signal-
to-background ratio is approximately 10. When the atomic beam current is switched off,
exponential decay of the fluorescence signal due to the oven cooling down is observed with
a time constant of τ ≈2.9 s (fit line to f(t) = A + Be−(t−t0)/τ shown in red). No chopper
wheel was used for the measurement shown here, so the residual count rate during the “off”
intervals is indicative of the level of background light light entering the PMT.

chapter 3).
In principle, a sufficiently stable probe field could resolve isotopic and hyperfine struc-

ture – but since the carrier frequency is fc ≈371 THz, a change in repetition rate by 10 Hz
corresponds to a change of ∼ 46 MHz in fc. This is already greater than fr/2 ≈ 40 MHz,
which is all that is required to go from a “direct” resonance where a comb tooth overlaps
an atomic transition to an “indirect” one where two teeth lie symmetrically on either side
of the resonant transition frequency. Without better stabilization of the repetition rate, we
cannot expect to resolve individual isotopes or hyperfine transitions.

4.3 Rubidium Vapor Cell

The rubidium picosecond experiment is technologically the closest to a noble gas nuclear
spin magnetometer; it consists of a room-temperature vapor cell with natural-abundance
rubidium in vacuum, probed by the picosecond laser discussed in section 4.2. Though not
a nuclear spin system, the experiment provides an opportunity to explore some aspects of
two-photon spectroscopy with vapor cells and pulsed lasers, and illustrates that some basic
properties such as the dependence of excitation probability on probe field polarization carry
over into pulsed systems more or less as expected.
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Figure 4.5: Level structure of the 778 nm 5s 2S 1
2
→ 5d 2D 5

2
two-photon transition, includ-

ing the 420 nm fluorescence line used for detection.

The two-photon laser is nearly resonant with the strong D-line transitions from the
5s 2S 1

2
ground state to the 5p 2P 1

2
, 3
2

states at 795 nm and 780 nm (respectively). These
transitions are not resonant with the picosecond probe field (due to the relatively narrow
bandwidth of ∼ 0.5 nm, but the small intermediate detunings contribute a large enhance-
ment of the transition rate. It is relatively straightforward to obtain a 420 nm fluorescence
signal even without heating the cell, and peak count rates above 106 Hz were achieved with
moderate laser power (limited by PMT saturation).

The mean thermal velocity for atoms in the vapor cell is approximately 270 m/s,
roughly comparable to ytterbium atoms in the atomic beam or xenon atoms under the same
conditions. In this case (unlike the Yb beam, where Doppler broadening was minimized by
the transverse excitation geometry) the Doppler broadening is about 0.5 GHz, considerably
larger than the radiative linewidth of 4 MHz. Again assuming a beam waist of 100 µm, the
atoms experience a transit broadening of just under 3 MHz, comparable to the radiative
linewidth of the excited state. This means that on average each atom interacts with 30
pulses, 20 of which occur within a single radiative lifetime.

The laser configuration is the same as that shown in figures 4.2 and 4.3, with the bire-
fringent filter tuned to select 778 nm instead of 808 nm. We attempted to observe a fluo-
rescence signal with a CCD imaging system, but ultimately did not succeed. The imaging
system was replaced with a PMT and ambient light shields. Only one fluorescence path is
necessary to detect a signal from rubidium, but for xenon and other atoms where the inter-
mediate detunings are large and less laser power is available, the folded 4f fluorescence
collection system is expected to provide a factor of two signal enhancement. In principle,
the recycling mirror can be aligned to produce a Doppler-free enhancement of the two-
photon scattering rate (i.e. a factor of six accompanied by increased spectral resolution,
rather than the existing factor of two that preserves Doppler broadening), but the interpulse
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Figure 4.6: Spectrum of the picosecond Ti:sapphire oscillator, tuned to the 778 nm two-
photon resonance in rubidium. The green line indicates the nominal transition wavelength,
but the laser spectrum is centered at the observed fluorescence maximum (the discrepancy is
likely due to error in the spectrometer calibration). The spectral bandwidth corresponds to
approximately 0.5 nm or∼250 GHz, near the transform limit of 220 GHz for 2 ps Gaussian
pulses.

distance is ∼3.75 m, requiring a two-meter extension of the optical path to overlap succes-
sive pulses in the vapor cell. For this reason, we have not yet explored Doppler-free pulsed
two-photon spectroscopy.

In figure 4.8 we show a ∼ 25% modulation of the detected fluorescence intensity, as a
function of probe polarization. The linear polarizations correspond to a maximal scattering
rate, while the circular polarizations correspond to minima; this can be explained by the
Clebsch-Gordan coefficients and respective line strengths that are allowed in each case
(recall that this includes an average over both stable isotopes and all hyperfine components).
The fit function (green line) is given by

q(θ) = A+B sin(Cθ +D) , (4.12)

where θ is the waveplate angle.
The rubidium experiment demonstrates two-photon excitation with modelocked pi-

cosecond pulse, detected by laser-induced fluorescence in a room-temperature vapor cell.
Although the spectral stability of the laser is not presently adequate to resolve individual
hyperfine transitions, we have verified that the scattering rate depends on the probe field
polarization as expected – this is a crucial point for two-photon magnetometry, which (as
demonstrated in chapter 3) relies on very fine control of the probe polarization. It remains
to extend these studies to include the effects of optical pumping and magnetic resonance,
for which a more stable laser spectrum is required.
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Figure 4.7: Diagram of the rubidium vapor cell experiment, in a configuration similar
to that envisioned for noble gas vapor cells. A room-temperature rubidium vapor cell is
mounted inside a light-blocked “blackout” box, and probed with a focused probe beam at
778 nm produced by the picosecond Ti:sapphire oscillator. A focusing lens and recycling
mirror maximize the intensity at the center of the cell, which is also the focal point for
the high-numerical-aperture collection optics for the 420 nm fluorescence light. Two an-
tiparallel fluorescence paths are collected, and both are directed through a bandpass filter
into a photon-counting PMT head, similar to that used for the ytterbium experiments. The
fluorescence and excitation wavelengths are discriminated by a 420 nm bandpass filter, and
detection is synchronized to an optical chopper wheel for background subtraction.
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Figure 4.8: Modulation of fluorescence signal with probe polarization. The x-axis indicates
the angular orientation of a quarter-waveplate’s fast axis; the angles 0◦, 90◦, 180◦, 270◦,
and 360◦ correspond to the same linear polarization. The angles 45◦ and 225◦ correspond
to right-hand circular polarization, while 135◦ and 315◦ correspond to left-hand circular
polarization. Note that the sense of circular polarization does not affect the signal, but the
degree of ellipticity does. The green line is fit to the function q(θ) defined in equation 4.12;
the period of the sinusoidal modulation is approximately 90◦, as expected.
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4.4 Ytterbium Atomic Beam: Femtosecond Pulses

The femtosecond laser used for pulsed spectroscopy of ytterbium is a homemade system di-
agrammed in figure 4.9. (We are indebted to Steve Cundiff’s research group, and in partic-
ular to Bachana Lomsadze for the loan of this equipment and assistance operating it). The
cavity layout is relatively simple and standard for modelocked femtosecond Ti:sapphire
oscillators (see figure 4.9 and [82, 83]). A ∼ 5 W pump beam at 532 nm is coupled into
the cavity through a dichroic coating on one of the curved focusing mirrors; it enters the
Ti:sapphire crystal, which is Brewster-cut to minimize reflection losses. Intracavity disper-
sion compensation is provided by fused silica prisms, in a double-pass folded configuration.
The end mirror of the prism compressor is mounted on a split piezo to provide a fine tuning
degree of freedom for the cavity dispersion; this can also be adjusted via intensity modula-
tion of the pump beam, using an AOM outside the cavity to redirect a small fraction of the
incident power. Passive modelocking is provided by Kerr lensing in the Ti:sapphire crys-
tal, whereby the intensity-dependent index of refraction is exploited to couple high-energy
pulses into resonant spatial modes, and the lower-intensity wings of the pulse become at-
tenuated on each round trip through the cavity. Since the pulsed frequency spectrum fills
the gain bandwidth of the cavity, the carrier-envelope offset phase is less prone to drift
than in picosecond oscillators. A small mechanical perturbation (such as tugging on a wire
connected to one of the translation stages on which the prisms are mounted) is usually
sufficient to establish modelocking when the cavity is well aligned. Once modelocking is
established, the repetition rate can be finely adjusted by moving the output coupler with a
piezoelectric transducer.

In the alignment configuration used for this experiment the laser produces 25-30 fs
pulses with a center wavelength near 808 nm, at a repetition rate of ∼ 93.2 MHz. The
spectrum can be adjusted by spatially filtering the dispersed spectrum with apertures (razor
blades) between the compressor prisms. The maximum average power is ∼ 300 mW, so a
broader frequency spectrum is typically characterized by a lower peak (spectral) intensity.
Naively scaling the picosecond signal by this repetition rate and average power, and a
linewidth of 15 THz, we would expect a femtosecond signal of ∼ 0.2 counts per second –
this is remarkably close to the detected signal of 0.5 counts per second, shown in figures
4.13 and 4.14.

The experimental configuration shown in figure 4.11 is similar to the one described in
the picosecond experiment of the previous section. The major difference is that dispersive
optics must be kept to an absolute minimum, in particular coated or transmissive optics
such as lenses and windows that are not specifically designed for low group delay disper-
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Figure 4.9: Diagram of the femtosecond Ti:sapphire (Ti:S) resonator, showing the tuning
degrees of freedom δL and δθ that respectively stabilize the repetition rate fr and the carrier-
envelope offset frequency f0. The angular parameter θ is modulated by a split piezo-electric
transducer mounted on the end mirror of the double-pass prism compressor, providing a fine
adjustment of the cavity dispersion. The repetition rate is determined by the optical path
length L of the cavity, and adjusted by translating the output coupler with another piezo.
The prism compressor consists of two fused silica prisms in double pass configuration; the
interprism distance, where the beam is diverging, determines the amount of negative dis-
persion introduced to compensate for normal dispersion in other cavity components. This
regulates the pulse length, which can be as low as 15-20 fs at the output of the resonator.
The acousto-optic modulator (AOM) is used to modulate the intensity of pump light en-
tering the cavity, and can be used to tune the cavity dispersion via the intensity-dependent
refractive index of the Ti:sapphire crystal. The curved cavity mirrors focus the beam into
the Ti:sapphire crystal, increasing the intensity to further exploit the Kerr nonlinearity for
modelocking.

115



650 700 750 800 850 900 950
1000

1500

2000

2500

3000

3500

4000

4500

5000

Wavelength (nm)

In
te

n
s
it
y
 (

a
rb

.)

Figure 4.10: Representative spectrum of the femtosecond Ti:sapphire oscillator, with a
center wavelength near 808 nm. The frequency bandwidth is approximately 15 THz, cor-
responding to a pulse length of ∼30 fs for a transform-limited Gaussian pulse. The central
frequency is fc ≈ 371 THz and the repetition rate is fr ≈ 93.2 MHz, so that an adjustment
of fr by 1 Hz produces a change of ∼4 MHz in fc.
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sion (GDD). Protected silver and gold mirrors (metal coatings with a protective SiO2 layer,
e.g. Thorlabs PF10-03-P01) seem to adequately minimize the GDD introduced by reflec-
tive optics. (No signal was observed in earlier attempts, when multilayer dielectric mirrors
were included in the beam path.) Transmissive dispersion due to unavoidable lenses and
windows was partially precompensated using a prism compressor or chirped mirrors. Even
without additional optics the pulse length increases to ∼ 250 fs by the time it can be mea-
sured in an autocorrelator, and even after precompensation the shortest measured pulses
were ∼ 60 fs – at least a factor of two longer than the transform limit of30 fs. Therefore,
we expect that despite precompensation the pulses incident on the atomic beam are strongly
chirped.
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Figure 4.11: Diagram of the experimental configuration used for femtosecond two-photon
spectroscopy of the ytterbium atomic beam. The picosecond oscillator shown in figure 4.2
has been replaced by the femtosecond oscillator shown in figure 4.9. The monitors for
repetition rate and power spectrum are similar, but a pulse compressor and autocorrelator
have been added in place of the LBO frequency doubler. The pulse length at the cavity
output is 25-30 fs (inferred from the power spectrum), but this broadens to ∼250 fs due to
propagation through dispersive optical media. Prisms (shown) or chirped mirrors are used
in the compression stage to precompensate for dispersion, and their effect can be measured
by redirecting the beam into a BBO autocorrelator with a flip mirror. Pulses as short as
60 fs were observed in autocorrelation, using either chirped mirrors or fused silica prisms.

Both fused silica prisms and chirped mirrors were successfully used for pulse com-
pression (see figure 4.12); of these, the prisms were more reliable. This is because their
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dispersion relations are better known, and their degrees of freedom continuously tunable
(chirped mirrors allow only integer multiples of the per-reflection negative GDD). In ei-
ther case, the shortest achievable output pulse was approximately 60 fs as measured in a
homemade BBO autocorrelator, where the beam path is arranged such that the probe beam
can be switched between autocorrelator and experiment by raising or lowering a flip mir-
ror (see figure 4.11). The autocorrelator measures the intensity of second-harmonic light
produced in BBO, when the probe beam is divided and recombined on the crystal. By scan-
ning the length of one path with a hollow corner cube on a translation stage, the relative
delay between pulses in the two arms is adjusted through zero such that the pulses overlap
and produce a measurable enhancement of the SHG intensity. The pulse width is measured
by recording the SHG intensity as a function of the delay-stage position and converting the
known optical path difference into a corresponding delay of propagation time. The autocor-
relator beam paths require a focusing lens and a few other transmissive optics that produce
a reasonable approximation of the amount of dispersive glass in the alternate beam path to
the ytterbium experiment; we attempt to calibrate the pulse length in the experiment by this
means, and expect that the pulses arriving at the atomic beam are between 60 and 80 fs in
duration.

Unlike in the picosecond experiment, the optical chopper was necessary to see a signal.
It was also crucial to turn off all lights in the lab, including the display panels of most
electronics. Even with the chopper wheel for background subtraction, the statistical noise
associated with residual ambient light was large enough to wash out the fluorescence sig-
nal. As in previous experiments, good beam shaping and minimal diffraction were required
to avoid overwhelming the PMT with scattered laser light – in this case, laser light that was
already suppressed by six orders of magnitude with a bandpass filter! The ultimately suc-
cessful detection configuration involved chopping the probe beam at 1 kHz and subtracting
back-to-back gated bins from the central 150 µs of each chopper window. The photon
counter integrated for 100 s per data point in this configuration, and between 10 and 100
data points were collected between changes of experimental parameters. Signals showing
modulation with laser and atomic beam intensity are presented in figure 4.13. The second
maximum near 17 mm in figure 4.13(b) may be due to diffracted laser light entering the
PMT, as the focusing lens is positioned differently with respect to apertures that were opti-
mized for spatial filtering at 25 mm. Another possibility is that the atomic beam is spatially
inhomogeneous (although this is was not observed in cw two-photon data).

With optimized lens position and pulse compression, we attempted to measure the ex-
cited state spectrum by allowing the repetition rate to slowly drift. Smooth scans of the
output coupler over a small range did not show significant modulation of the fluorescence
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Figure 4.12: Pulse width measured by autocorrelation, as a function of the number of
reflections on a set of chirped mirrors. Without chirped mirrors, the pulse width was mea-
sured to be 242.5 fs; blue points show measurements. The green line is a linear fit to these
data, which indicates a reduction in pulse length by approximately 5.5 fs per reflection.
The shortest pulse length achievable with chirped mirrors was 60 fs; additional reflections
on the chirped mirrors seem to introduce higher-order dispersion that leads to pulse broad-
ening.
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Figure 4.13: Fluorescence data showing the presence/absence of a femtosecond ytterbium
signal, and its dependence on the position of a focusing lens for the probe beam. (a) Red
data points correspond to both the probe laser and atomic beam on and intersecting; the
first green data point has the laser blocked (atomic beam on) and the second has the atomic
beam blocked (laser on). (b) Variation of the measured fluorescence intensity as the probe
focusing lens is moved, thereby scanning the highest-intensity region through the atomic
beam. The peak around 25 mm is the global maximum; the smaller maximum near 17 mm
may result from a subsidiary density maximum in the atomic beam, or from diffracted laser
light entering the PMT. The green data point on the right-hand plot was recorded with the
lens in the same position as the corresponding blue data point, but with the atomic beam
turned off. The red data point at the same position was recorded after the oven was turned
back on, but not fully warmed up. The full signal, consistent with the blue data point, was
recovered when the oven was allowed to warm up completely.
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intensity, but figure 4.14 shows frequency-dependent structure in the fluorescence spectrum
when the repetition rate was allowed to drift over a large range for an extended period of
time. It is not possible to identify specific known transitions in this spectrum, but it is
hoped that with an improved signal-to-noise ratio and finer control of the repetition rate it
will be possible to perform high-resolution spectroscopy on specific hyperfine and isotopic
transitions.
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Figure 4.14: (a) Detected count rate as a function of carrier frequency (blue points), which
is extrapolated from the measured repetition rate fr under the assumption that drifts in
the carrier-envelope offset frequency f0 are negligible. The red line shows a fit to a con-
stant “off-resonant” average signal of 43 Hz, corresponding to the situation where no single
transition makes a dominant contribution to the measured count rate. The peak visible near
−1000 MHz is a resonantly enhanced transition, but the signal-to-background ratio is not
high enough to conclusively identify it. (b) Drift of the laser spectrum during the nine hours
when the data in plot (a) were collected. Note that a majority of the recorded frequencies
are in the range of−1500 MHz to−1000 MHz, so the error bars are correspondingly larger
in the range of −500 MHz to 500 MHz.

4.5 Further Thoughts and Improvements

It was hoped that superior control of the repetition rate in the femtosecond system (via
active stabilization of the cavity length) and carrier-envelope offset frequency (via a split
piezo on the cavity end mirror, or intensity modulation of the pump beam with an AOM)
would contribute to a more rapid characterization and optimization of the signal than in
the picosecond system, but in fact it was quite laborious even to unambiguously detect a
fluorescence signal using the femtosecond probe laser.

Proposed methods to stabilize the picosecond laser spectrum are discussed in section
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4.5.1; the essential point is that the laser bandwidth is sufficiently narrow that the experi-
mental effects of drift in f0 and fr are indistinguishable. Thus, one can feed back to correct
an unknown combination of these independent drifts simply by shifting the entire spectrum
with an AOM outside the laser cavity. The difficulty is to find a stable frequency refer-
ence within the bandwidth of the laser; fortunately this can be achieved for both xenon and
ytterbium using a diode laser stabilized to an atomic potassium resonance. The dynamic
range of the AOM technique is limited, and it is likely to require pre-stabilization of the
repetition rate using an intracavity piezoelectric transducer. This can be accomplished with
commercial (e.g., Spectra-Physics Lok-to-Clock) or homemade apparatus.

Dispersion due to the LBO doubling crystal is also a concern in the picosecond ex-
periments, since any even-order spectral phase will reduce the two-photon excitation rate
through interference of different excitation pathways. The configurations used so far all
include the LBO crystal in the beam path from the Ti:sapphire cavity to the experiment. A
useful diagnostic would be to repeat the picosecond experiments with the doubler removed
(or placed behind the atomic beam or vapor cell), to see if the excitation rate is increased
beyond what would be expected from the increased incident intensity. If dispersion from
the doubling crystal is a limitation in the present experiments, dispersion compensation
will likely be required for two-photon experiments with noble gases (which require an ad-
ditional nonlinear frequency-mixing stage).

A picosecond or experiment with a higher signal-to-noise ratio could map out the ex-
cited state spectrum in detail by deliberately scanning the repetition rate; such measure-
ments are envisioned for the determination of hyperfine structure and isotope shifts in
radon.

As in the cw case, a magnetic resonance experiment with an RF quenching field is a
desirable step toward a two-photon pulsed magnetometer; by inducing transitions between
different ground state Zeeman sublevels (or hyperfine levels in the case of rubidium), it
should be possible to observe a modulation of the two-photon scattering rate. This modula-
tion will depend on the probe field polarization, even if individual hyperfine transitions are
not resolved. This was attempted in the rubidium experiment, but a large baseline modula-
tion was observed due to the presence of a time-varying magnetic field at the PMT location.
Future efforts could magnetically shield the PMT, or spatially separate the RF region from
the detection apparatus.
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4.5.1 Stabilization of the Picosecond Pulsed Spectrum at 808nm

The principal limitation of the picosecond experiments described in chapter 4 is a lack of
stability and fine control for the laser spectrum. Since the repetition rate is fr ≈ 80 MHz,
a change of ∼ 9 Hz in fr is required to change fc by 40 MHz, the amount required to scan
the laser from a “direct” resonance to an “indirect” one (or vice versa). This corresponds
to scanning a cavity mirror by approximately 0.25 µm, which is well within the range of
standard piezoelectric actuators. Since fr is currently unstable at the level of a few tens of
hertz, it may be most reasonable to use a stacked actuator with a large dynamic range of
several microns for “coarse” stabilization. A harmonic of fr, measured on an avalanche
photodiode (APD), can be stabilized to a RF reference source. This is a standard technique
for cavity stabilization of Ti:sapphire oscillators [84].

The difficulty is that even with fr stabilized, drift of the carrier-envelope offset fre-
quency f0 in the picosecond system may still be significant. The challenging task of sta-
bilizing f0 has been overcome in femtosecond frequency combs via a variety of methods
for self-referencing, but all such techniques require a spectral bandwidth that is reasonably
large in comparison to the carrier frequency (i.e., only a factor of two or three smaller). In
fact, any sufficiently stable cw laser can be used as a frequency reference for a modelocked
laser, provided its frequency falls within the spectrum of the pulsed laser. A beat note
between the modelocked and cw lasers can be measured on an APD and stabilized using
standard techniques; the challenge then lies in obtaining a sufficiently stable cw laser at a
useful frequency.

Fortunately, the 404.8 nm and 404.5 nm potassium transitions from the 3p64s 2S 1
2

ground state to the 3p65p 2P 1
2
, 3
2

excited states (sometimes referred to as the “second dou-
blet”) fall nearly within the bandwidth of 2 ps pulses at 404.0 nm. The latter are already
produced in our picosecond ytterbium experiment by passing the 808 nm probe beam
through the LBO doubling stage; except for modelocking diagnostics, the resulting 404 nm
light is not used in the experiment. We therefore envision a cw diode laser stabilized to
a 404.5 nm potassium resonance by polarization spectroscopy, saturated absorption spec-
troscopy, a dichroic atomic vapor laser lock (DAVLL), or other standard technique. This is
overlapped with the pulsed 404 nm beam on an APD, to produce a beat note for stabiliza-
tion as shown in figure 4.15.

The spectral bandwidth of the picosecond oscillator can be tuned by roughly a factor of
two using a single GTI. It may be that the frequency-doubled spectrum in the current con-
figuration (FWHM ≈ 0.25 nm) has insufficient spectral intensity at 404.5 nm to produce
a useful beat note with a potassium-stabilized diode laser; in this case the GTI should be
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Figure 4.15: Stabilization scheme for the picosecond ytterbium experiment. A cw diode
laser at 404.5 nm is locked to a potassium reference cell, and its heterodyne beat frequency
with the second harmonic beam from the Ti:sapphire is measured with an avalanche pho-
todiode (APD). The beat frequency is stabilized by adjusting the drive frequency of an
acousto-optic modulator (AOM) in the original 808 nm beam. The cavity length can be
separately stabilized with a piezoelectric transducer, by separately locking a harmonic of
the repetition rate fr to a RF reference oscillator. The AOM thus feeds back to a combi-
nation of f0 and fr, but the spectral bandwidth of a picosecond pulse is sufficiently narrow
that this distinction is not important.
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adjusted to broaden the spectrum, or replaced with one that allows slightly shorter pulses.
To transfer the lock to the 808 nm beam, the output of the cavity-stabilized Tsunami

can be directed through an acousto-optic modulator (AOM), which acts as a common-
mode frequency shifter for all axial modes in the pulsed laser spectrum. By changing the
drive frequency of the AOM, the spectrum can be easily shifted by several times the inter-
mode spacing of fr ≈ 80 MHz. This frequency shift is transferred to the 404 nm spectrum,
and thus affects the beat note with the potassium-stabilized diode laser. Considering the
potassium to be an absolute frequency reference, we need only adjust the AOM frequency
to stabilize the beat note in order to transfer that stabilization to the picosecond oscillator.
This can be accomplished with standard RF electronics and a relatively simple feedback
circuit.

A remaining concern is what happens if the laser spectrum diabatically “jumps” by a
full axial mode spacing, in which case the error signal from the potassium lock will transfer
the locking point to a new axial mode and the Ti:sapphire spectrum will remain stabilized
with an 80 MHz offset (or 160 MHz, etc.). This can in principle be prevented by modulating
the repetition rate at a relatively slow frequency, such that the phase of the modulation is
abruptly shifted by 180◦ in the event of such a jump. Once stabilized, the system can thus
be prevented from locking to the “wrong” axial mode.

4.5.2 Modelocked Picosecond Pulses for Xenon

Figure 4.16 shows a scheme for pulsed two-photon spectroscopy of the 256 nm xenon
transition, where the excitation light is produced by third-harmonic generation from the
existing picosecond Ti:sapphire oscillator. This can be accomplished starting from 768 nm
light (which is easily produced by the Ti:sapphire laser in its current configuration) and
generating the second harmonic in LBO. We have produced over 200 mW of average power
at 384 nm using the single-pass LBO doubler described in chapter 4, with approximately
1.5 W remaining in the residual 768 nm beam. The presently missing piece is a BBO sum-
frequency generator that would combine the 384 nm and 768 nm pulses to produce 256 nm,
hopefully resulting in an output beam with several milliwatts of average power.

A significant advantage of pulsed lasers, already mentioned in chapter 4, is that the rel-
evant optical damage mechanisms scale with average intensity rather than peak intensity.
At minimum, this means that the situation is not worse than for a cw laser of the same av-
erage power, but in fact it may be considerably better since resonant cavity enhancement is
not typically required for pulsed frequency mixing (due to the much higher peak intensity).
Single-pass frequency mixing also means that dispersion from the nonlinear crystal is not
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compounded on successive round trips, and we can extrapolate the expected spectral phase
profile using the Sellmeier equations for BBO (see [85] and references therein).

Modelocking is reliably transferred to the ultraviolet by nonlinear frequency conver-
sion, but the fundamental oscillator must again be stabilized. Remarkably, there is again
a conveniently located potassium doublet that can in principle be used as an absolute fre-
quency standard. The potassium D-line transitions occur at 766.7 nm and 770.1 nm, and
standard techniques developed by atomic physics laboratories over the last twenty years
have made it routine to stabilize external-cavity diode lasers at these wavelengths. Since
both D-lines are detuned from the 768 nm Ti:sapphire wavelength by more than two band-
widths of the pulsed spectrum, a different GTI is probably necessary to broaden the pulse
spectrum in order that axial modes overlapping with the potassium resonance can be ex-
cited.

4.5.3 Radon EDM

An EDM search is planned using isotopes of radon, in which a nuclear octupole defor-
mation is expected to significantly enhance sensitivity to CP -violating physics [21, 86].
All isotopes of radon are radioactive, and the isotopes that are relevant for EDM searches
have half-lives on the order of 30 minutes. The experimental approach involves obtaining
radon gas from a rare isotope beam facility and polarizing it using spin-exchange optical
pumping. The polarized spins can then be manipulated with magnetic resonance pulses
to initiate free precession in the presence of applied external electric and magnetic fields.
The angular correlation of decay products with the instantaneous spin orientation would
be used to read out Larmor precession, and the measured precession phase used to place a
bound on the nuclear EDM in the usual way.

Such an experiment is extremely technically intensive, and direct optical magnetometry
with radon is a desirable alternative to detailed characterization of the time-varying decay
spectra. The precision available from gamma anisotropy measurements is limited by de-
tector efficiency and the fact that only decay products are measured, whereas every radon
atom in the cell can contribute to an optical magnetometry based method.

The longest E1 wavelength for one-photon excitation of radon is 179 nm, near the long-
wavelength limit of the vacuum ultraviolet. On the other hand, two-photon transitions out
of the ground state are available at wavelengths as long as 300 nm. In particular, a transition
at 257 nm is very near the 256 nm xenon resonance, and in fact is even better suited to the
stabilization scheme proposed in section 4.5.2 since the potassium resonance at 770.1 nm
is closer to the center of the fundamental spectrum.
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Figure 4.16: The scheme envisioned for producing stable picosecond pulses at 256 nm for
two-photon spectroscopy of xenon. Most features of the laser stabilization are similar to
those detailed in figure 4.15, with the difference that the potassium D-line resonance at
766.7 nm or 770.1 nm is used as an absolute reference to stabilize the 768 nm fundamental
output of the Ti:sapphire. The stabilized 768 nm beam is frequency-doubled to produce
384 nm, followed by a sum-frequency stage in BBO to produce 256 nm. The experimental
apparatus for xenon spectroscopy is similar to the one described for rubidium in section
4.3.
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Figure 4.17: Some excited states and intermediate levels relevant to two-photon excita-
tion of radon. The red wavelengths are close to the xenon transition at 256 nm and could
therefore be obtained from a xenon experiment with minimal adjustments.
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CHAPTER 5

Cells and EDM Applications

Optical magnetometry, searches for a permanent electric dipole moment (EDM), and other
precision measurements involving polarized spin distributions very often rely on gaseous
samples contained in sealed cells. The statistical precision of such measurements is limited
by the number of polarized atoms or molecules in the cell and by their spin coherence time,
both of which can be quite large in comparison to the values achievable in laser traps or
storage rings. This chapter discusses the production and optimization of cells for optical
magnetometry and EDM searches involving polarized 3He and 129Xe. We also briefly touch
upon some related issues involving spin-exchange polarization, refillable valved cells, and
stand-alone noble gas polarizers.

The technical requirements imposed on cells for hyperpolarized diamagnetic atoms de-
pend on the type of measurement for which they are intended, and on which systematic
effects are likely to limit it. The shape, size, material(s), cleaning and filling procedures,
internal coating (if any), and filling pressure can all limit the achievable polarization ampli-
tude and lifetime. Other effects that may enter the error budget of a precision measurement
include shape-dependent frequency shifts, motional averaging in different regimes of num-
ber density and field strength, the rate of dimer formation and break-up, decoherence and
frequency shifts due to magnetic impurities, and (especially in EDM experiments) effects
related to the presence of electric fields inside the cell. The method of polarization and
the precise mixture of different atomic and molecular species can modify these effects, and
also place bounds on the maximum achievable signal.

Each degree of freedom in cell production has an optimal value or range; for example
the filling pressure should be sufficiently high that the cell contains enough particles for
the desired statistical precision, yet not so high that the spin coherence time is significantly
reduced by the high collision rate. However, other degrees of freedom may conflict with
that optimum. For example, in EDM experiments the final precision also depends on the
applied electric field strength, with the result that dielectric breakdown may impose a high-
pressure limit more stringent than the one due to collisional decoherence. The next section
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summarizes the different limitations associated with optical magnetometer cells and EDM
cells, and the following sections survey how these requirements can be satisfied in practice.

5.1 Requirements for Optical Magnetometry

The most obvious requirement for optical magnetometry is that the cell be optically trans-
missive at the relevant wavelengths. For 129Xe, the excitation wavelength is 256 nm and the
infrared fluorescence wavelengths are 904.8 nm and 992.6 nm (see chapter 3, figure 3.25).
Pyrex and GE-180 have poor optical transmission at 256 nm, and materials with high ul-
traviolet transmission such as MgF2, LiF, and sapphire (Al2O3) cannot be worked with a
torch like optical glasses (see section 5.4.1 for an alternative approach to cell construction
using these materials). The most practical options remaining are quartz and fused silica,
which can be worked with a torch and even welded to each other. In particular, a 1 cm
thick window of uncoated ultraviolet-grade fused silica (UVFS) can transmit > 90% of the
incident optical power at 256 nm (loss is dominated by Fresnel reflection).

It is also desirable that atomic polarization in a magnetometer should not relax too
quickly. The walls of glass cells are known to generally contain spin-depolarizing param-
agnetic impurities. The effect of these can be mitigated by the application of antirelaxation
coatings such as octadecyltrichlorosilane (OTS) [87–90], and to some extent by proper
cleaning protocol. The effect of antirelaxation coatings is two-fold: the “sticking time”
during which the atom is transiently bound to the wall is reduced so that the depolarizing
perturbation is applied for a shorter time, and the distance between the atom and the impu-
rity is increased so that the perturbing magnetic field (usually modeled as a point dipole)
is substantially reduced at the location of the polarized nucleus. Iron-free aluminosilicate
glasses such as GE-180 and Corning 1720 have favorable noble gas relaxation properties
even without wall coatings [91–97].

5.2 EDM Measurements: the HeXe Experiment

EDM experiments require the application of large static electric fields to the cell’s interior
volume. The field must be applied in such a way that it is not screened from the interior
by the electrostatic displacement of bound charges in the cell walls; in practice this means
that electrodes must be located inside the cell. A simple way to accomplish this is to
make a cylindrical cell whose end walls are also electrodes, with a glass cylindrical body
providing an insulating barrier between them. We have developed such cells for EDM
experiments using a modified hydroxide-catalysis bonding method [2], which is discussed
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in section 5.6 below. This section briefly surveys experiments conducted by the HeXe
collaboration, which has used those cells in developing a new approach to measuring the
nuclear EDM of 129Xe. Further details concerning these and related measurements are
available in [2, 98, 99].

These measurements employ low Tc (LTc) SQUID gradiometers to measure the pre-
cession of polarized 3He and 129Xe nuclei in the presence of applied electric and magnetic
fields. The noble gases are polarized using SEOP with rubidium, in an aluminosilicate op-
tical pumping cell operated in a flow-through configuration. The evacuated optical pump-
ing cell contains rubidium metal, and unpolarized gas is introduced from a separate gas
handling system via manually actuated valves. The ratio of noble gas partial pressures is
chosen to produce comparable magnetic field sensitivities when accounting for differences
in gyromagnetic ratio and polarization efficiency between the two species [98]. The total
pressure in the optical pumping cell is typically in the range of one bar, including 5-10%
nitrogen buffer gas for collisional quenching of excited rubidium. The cell is contained
within a calcium silicate oven, and maintained at a temperature of approximately 150◦C
using flowing air. A magnetic field around 4 mT is produced by external coils, and polar-
ization build-up can be monitored using pulsed NMR at a resonance frequency of 40 kHz
for 129Xe (the field can be changed to bring the 3He resonance down to the same frequency).
Equilibrium polarization is typically achieved after several hours of optical pumping with
a 100 W circularly polarized beam from a 795 nm laser diode array.

An EDM cell with silicon electrodes is evacuated and connected to the optical pumping
cell, and then filled by opening a valve once equilibrium polarization has been reached. It
is mounted in a cell holder with high voltage connections for the two electrodes, and me-
chanically transported into a magnetically shielded room (MSR) through a hole in the wall.
The MSR has three layers of passive shielding: one aluminum layer for RF suppression,
and two layers of µ-metal (Krupp Magnifer) for magnetic shielding [99]. At the center
of the MSR, the residual magnetic field is below 1 nT and the residual gradient is below
300 pT/m. An internal static bias field of approximately 1.2 µT is supplied by three-axis
Helmholtz coils inside the MSR, resulting in Larmor frequencies of approximately 40 Hz
for 3He and 14 Hz for 129Xe.

The cell is placed under a grounded silicon wafer (see figure 5.1), which protects the
SQUIDs from damage in case of a high voltage breakdown; the liquid helium dewar that
contains the SQUIDs is positioned directly above this wafer. The pickup coils for the
SQUID sensors are arranged on the faces of a 30 mm cube, such that two channels are
available for each axis. The six channels are accordingly referred to as X1,Y1,Z1,X2,Y2,Z2
and are oriented such that these labels agree with the coordinate axes shown in figure 5.1
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Figure 5.1: Block diagram of central components in the HeXe EDM experiment. A spin-
exchange optical pumping cell containing rubidium, N2 buffer gas, 3He, and 129Xe is con-
tained in a calcium silicate oven and heated to 150◦C by flowing air. A magnetic field along
the beam axis of approximately 4 mT is produced by coils outside the oven (not shown).
The rubidium vapor is maintained at nearly 100% polarization by D1 optical pumping using
a 100 W circularly polarized beam (produced by a 795 nm laser diode array); this polariza-
tion is collisionally transferred to the noble gas nuclei over a period of several hours. The
polarized gas is introduced to an evacuated EDM cell using manually actuated valves, and
the cell is transported into a magnetically shielded room whose walls include an aluminum
layer for RF shielding and two layers of µ-metal (Krupp Magnifer) for passive magnetic
shielding. The cell’s silicon electrodes are connected to high voltage leads to produce an
internal electric field, and it is placed directly underneath a nonmagnetic liquid helium de-
war containing a six-channel LTc SQUID sensor (not shown). The grounded silicon wafer
serves as a protective barrier for the SQUIDs in case of high voltage breakdown. A mag-
netic field of approximately 1 µT is supplied by three-axis Helmholtz coils within the room
(not shown), and spin precession is initiated either by rapidly changing the direction of this
applied field, or by using one pair of coils to produce a resonant NMR pulse.
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Figure 5.2: (a) Spin precession signals of 3He and 129Xe at frequencies of 40.8 Hz and
14.8 Hz, respectively, detected by the LTc SQUID sensor (Z1) at a distance of about 110
mm to the center of the EDM cell. (b) Free precession decays of 3He (red) and 129Xe
(blue) (signals were filtered by a software FIR bandpass filter of 4 Hz width centered at the
corresponding Larmor frequencies) (c) EDM cell mounted on the transport system. (Re-
produced from [2] with permission of Springer; figure and caption © Springer International
Publishing Switzerland 2016.)

(acceleration due to gravity is into the page, along −ẑ). Gradiometric measurements are
performed by subtracting the signals for each pair of channels; the spin precession signal
is typically measured using the Z1−Z2 gradiometer. For EDM measurements, the applied
electric and magnetic fields should be parallel; the simplest configuration is to thus orient
both along the ŷ axis, with the result that the spins precess in the xz plane. Gradiometry
in this configuration has the significant advantage that it is only sensitive to magnetic fields
that vary significantly over 30 mm (e.g. the spin precession signal, which has the strong
spatial dependence of a magnetic dipole).

High voltage is applied to the cell’s electrodes from a supply outside the MSR, using in-
sulated leads and copper contacts. After proper conditioning, the cells can typically sustain
electric fields of 4 kV/cm across a 2.5 cm electrode gap (we expect the ultimate limitation
to be the dielectric strength of helium gas). The electric field and high voltage apparatus
do not measurably affect the SQUID system.

Spin precession is initiated by a rapid change of the bias field direction, or by using one
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Figure 5.3: Gradiometer signals recorded from the SQUID sensor, following a series of
NMR pulses (ordered in time from top to bottom). Note that the transverse relaxation time
increases with each successive π

4
pulse; this effect may be due to the diminution of a large

longitudinal magnetization component, which is assumed to produce rapid relaxation of
the precessing spins. When a π

2
pulse is applied instead, most of this longitudinal mag-

netization is rotated into the precession plane and the transverse relaxation time increases
substantially. The small signal resulting from application of a second π

2
pulse is consistent

with the assumption that little longitudinal polarization remains after the first π
2

pulse.

set of Helmholtz coils to produce a π
2

pulse for both nuclei. The SQUID signal is the output
voltage of a flux-locking circuit (flux-locked loop), provided by two custom electronics
modules (Magnicon); this is recorded by a 24-bit USB DAQ system (Data Translation, DT
9826-16 USB). Reference [98] contains further details of the data acquisition system and
experimental components.

Figure 5.2 shows a typical dataset, and figure 5.3 demonstrates some effects that re-
sult from successive application of multiple NMR pulses. We have observed transverse
relaxation times exceeding 4500s for both species, simultaneously, in the presence of high
voltage. (This indicates that noble gas relaxation due to interactions with the silicon walls
will not be a limiting factor in this type of EDM search.) Together with the observed sig-
nal amplitudes (several pT) and noise densities (15 fT/

√
Hz), this implies an achievable

frequency resolution per measurement on the order of 1 nHz [2]. The equivalent EDM sen-
sitivity can be estimated from this value; it may approach 10−27 e cm per measurement, but
we must consider that systematic effects (which have not yet been addressed) are expected
to dominate the final error budget.

In addition to challenges associated with electrodes and cell construction, EDM cells
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are often limited by breakdown and frequency shifts. This places limitations on the shape
and filling pressure that can be accommodated in an EDM measurement, and EDM cells are
typically designed around such practical limitations. Fortunately iron-free aluminosilicate
glasses are characterized by high bulk resistivity and low helium permeability in addition
to their intrinsically favorable magnetic and spin-relaxation qualities.

5.3 Glass Design and Vacuum Filling Station

Glass working to produce cells and cell components was done by Roy Wentz in the chem-
istry department’s glass shop at the University of Michigan. A typical manifold with three
cells is shown in figure 5.4. Most cells prepared in our lab conform to this general scheme,
and are prepared and filled (after cleaning) on the vacuum and gas-filling system shown
in figure 5.5. The attachment point to the vacuum station is a glass-to-metal Kovar joint,
which couples the glass manifold to a standard 1-1/3′′ ConFlat flange. The sidearm for
alkali loading and distillation is relevant only to cells containing alkali metal, but this is
actually a majority of the cells considered here since rubidium is used for spin-exchange
optical pumping (SEOP) of xenon and helium. In most cases the entire manifold is made
of “pyrex” (really borosilicate, see below), with graded seals to match thermal expansion
with other glass types if such are used for the cells themselves. We have also used quartz
and aluminosilicate manifolds, but these present greater challenges to the glassblower and
few significant advantages in cell preparation.

The process for preparing and filling cells can be roughly divided into four parts:

1. Pre-cleaning (and coating): The glass is cleaned with detergent, organic solvents,
and corrosive piranha solution (see below) to remove surface contaminants. This
is critical for cells containing reactive elements or intended for experiments that re-
quire long polarization lifetimes. Antirelaxation coatings, when used, are applied
and cured after cleaning and before bake-out.

2. Pump-down and bake-out: The manifold is attached to the vacuum system and
open ports (used for cleaning access) are sealed with an oxygen-propane torch. Al-
kali metal is often introduced at this point, by opening an ampoule and placing it in
the sidearm immediately before sealing the top of the sidearm and pumping away
atmospheric gas with the vacuum station. The exposed alkali invariably oxidizes
during this process, and once the manifold is sealed and pumped out the ampoule is
usually heated through the glass with a torch just until the alkali metal melts. Once
the metal has melted, the oxide has also been eliminated (e.g. by dissociation, by
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Figure 5.4: Typical layout of a three cell manifold prepared for filling on the vacuum
system shown in figure 5.5. The connection to the vacuum system is made with a standard
1-1/3′′ ConFlat flange, which is attached to the glass manifold via a Kovar joint. The open
apertures (including the sidearm for alkali-loading) are used for cleaning, and sealed with
an oxygen-propane torch when the manifold is attached to the vacuum system. Virtually
any cell with a glass stem can be attached to this type of manifold for filling, but a thermal-
expansion-matching layer may be necessary for certain glass types. The manifold – apart
from the cells – is almost always made of pyrex, or occasionally quartz.

pumping away volatile elements, or by submersion of the residual crust in the liquid
metal). Part of the reason for having a separate sidearm is so that the contaminated
alkali can be re-distilled into the rest of the manifold, thus increasing the purity of
what is finally introduced to the cells.

The sealed manifold is then baked under vacuum, usually for 12-48 hours at a tem-
perature between 80◦C and 250◦C. The base pressure of the system is monitored with
an ion gauge during this time (see figure 5.5), and the chemical composition of back-
ground gas can be determined with a residual gas analyzer (RGA). A typical base
pressure reached after bake-out is in the range of 10−7-10−8 Torr.

3. Filling: Alkali is “chased” from the sidearm into the cells using a propane-oxygen
flame. Alternatively, the alkali can be slowly distilled into the cells by heating the
entire manifold with the exception of the cells themselves and a section of glass
tube leading up to the glass-metal joint. In this case, hot alkali vapor condenses on
the unheated surfaces and is trapped there: atoms that enter the cells do not escape,
and alkali is prevented from migrating out of the manifold by the barrier section of
unheated tube. This may result in higher-purity alkali in the cells, but care should
be taken to preserve an adequate length of unheated glass (or preferably, a section of
tubing that includes a bend) between the cells and the pumps, in order that significant
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quantities of alkali are not introduced to the rest of the vacuum system. Coated cells
should be heated only gently in the presence of alkali, since OTS reacts with hot
alkali vapor at temperatures above ∼ 200◦C.

The desired gas mixture is flowed into the cell from pre-attached reservoir bottles,
and partial pressures are measured with a 1000-Torr Baratron gauge. For this step,
the gate valve connecting the manifold to the vacuum pumps should be closed, and
only the valves leading from the gas source through the appropriate getter to the cell
left open. If a super-atmospheric cell is required, the cell may be submerged in liquid
nitrogen to reduce the internal pressure while it is filled and pulled off.

4. Pull-off: The thin glass tube (usually 0.25′′ or 6 mm) is sealed shut with a propane-
oxygen flame, and the cell pulled off from the manifold while the glass is soft. For
vacuum and sub-atmospheric pyrex cells, the glass has a tendency to collapse inward
due to the pressure difference from atmosphere to vacuum. If a significant amount of
gas is loaded inside the cell, one must work relatively quickly such that the cell can
be pulled off before the gas inside heats up and expands, “blowing out” the pull-off
point and ruining the cell. Liquid nitrogen can also be used to reduce the internal
pressure, and since xenon freezes at liquid nitrogen temperature, cells with quite
high xenon pressures can be made in this way. The pull-off point of the sealed cell
should be annealed with a softer flame to remove thermal stress resulting from the
high temperature gradient during pull-off.

Most cells prepared in our lab are cleaned according to a standard protocol, which was
developed for the application of OTS antirelaxation coatings. The procedure is as follows:

1. Alconox wash: Wash with a warm solution of Alconox detergent in distilled water,
especially if the glass received from the shop is particularly dirty. This removes
grease and dirt, but can be skipped if the cells are reasonably clean.

2. Organic solvents: Rinse the cells with methanol and/or acetone if they seem partic-
ularly dirty. This step is also sometimes skipped, when the glass is already somewhat
clean.

3. DI water rinse: Rinse three times with deionized water.

4. Piranha clean: Mix piranha solution (30% H2O2 and 97% H2SO4 in a 7:3 volume
ratio), pour into the manifold, and allow to sit and work for one hour. If the geom-
etry is such that part of the manifold cannot be submerged in piranha, it should be
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repositioned periodically during this time to ensure that the entire interior surface is
cleaned. This is a good idea anyway, since piranha produces bubbles of glass that
easily become trapped inside the cells and should be encouraged to escape so that
they to not shield part of the inner surface from the piranha itself. This step is the one
most responsible for removing contaminants from the glass surface, and care should
be taken after it is complete not to reintroduce any contamination.

5. DI water rinse: Rinse three times with deionized water.

6. Methanol rinse: Rinse three times with “clean” methanol, i.e. spectrophotometric
grade. This removes any residual traces of the piranha mixture.

7. DI water rinse: Rinse three times with deionized water. By this point, the glass is
usually clean enough that water interacts with the surface in a noticeably different
way – surface tension makes it difficult to get water in and out of the cells. Small
residual drops can be blown out with clean dry nitrogen gas, and if a large amount
of water becomes trapped in a cell, a clean glass or teflon capillary can be used to
introduce air and allow it to flow out. Care should be taken to use equally clean
capillary, and to avoid brushing the interior surface of the cells.

8. Dry and coat: At this stage, the cells can be dried and coated (see [87] for details of
the coating recipe).

5.4 Survey of Some Bonding Methods Relevant to Cell
Fabrication

5.4.1 Hydroxide-Catalysis Bonding

When the materials desired for a cell cannot be worked by conventional glassblowing, do
not have well-matched coefficients of thermal expansion, or include delicate components
such as optical coatings that may be destroyed by glass working, it is possible to produce
seals cells from pre-formed parts with various bonding techniques. Numerous methods of
bonding glass to silicon, metals, glass, and other materials have been developed over years
of extensive industrial research (especially wafer bonding in the context of nanofabrica-
tion), and we will not attempt to survey them. The silicate-assisted hydroxide catalysis
bond described here was developed for space-based research instrumentation and gravita-
tional wave interferometers [100–106]; to our knowledge this is the first application of the
technique to fabrication of vapor cells.
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Hydroxide-catalysis bonds are formed by successive hydration and dehydration of a
silica surface, catalyzed by a hydroxide such as NaOH in aqueous solution. During the
hydration process hydroxide ions in the bonding solution etch the surface and release sili-
cate ions [107], which subsequently dissociate into the silanol Si(OH)4. As the hydroxide
ions are used up, the pH of the solution lowers and the silanol gradually polymerizes into
siloxane (Si-O-Si) chains. The polymerization process releases water, which evaporates,
migrates, and diffuses away from the bond layer. When fully dehydrated, the surfaces are
joined by a rigid network of siloxane bridges; the settling time increases with initial pH and
decreases with annealing temperature.

The siloxane network that forms the final bond can also anchor to a surface oxide layer
on silicon. Silicate-bearing substrates can be bonded to other oxygen-rich surfaces in this
way, and bonds between two non-silica surfaces (e.g., alumina or silicon carbide) can be
achieved by introducing a silicate bonding solution, provided that both surfaces contain
sufficient oxygen to bond with the silicate. It appears that for silicon and silicon carbide, the
presence of a surface oxide layer is extremely important to the success of the bond [106].

Hydroxide-catalysis bonding was developed for fused silica elements in Gravity Probe
B, and is now used in the GEO600 gravitational wave detector to connect weight-bearing
fibers to the interferometer’s suspended mirrors [105, 106]. The bond’s high mechanical
strength (approaching that of bulk silica), stability, and resistance to temperature fluctua-
tions were important factors in its selection for interferometric and space applications. For
purposes of optical alignment, the settling time and strength of the bond can be adjusted
via the concentration of the bonding solution. The settling time is an increasing func-
tion of initial pH (since a more basic solution takes longer to neutralize), and the ultimate
bond strength depends on the silicate density since this affects the final density of siloxane
bridges. The curing period may be reduced from a typical four weeks by annealing the
bond above room temperature.

Typically only a few microliters (or less) of aqueous hydroxide solution are required
to bond surfaces of a few cm2 in area; the resulting bond layer is less than 100 nm thick,
and the required global surface flatness is usually quoted as λ/10 (i.e., 60-100nm). This
requirement may be relaxed to approximately λ/4 through use of a (few-percent) silicate
bonding solution which extends the siloxane network across larger interstitial voids. Op-
tical contact bonding (also known as “wringing” [108–110]) can occur when the bonding
surfaces are locally flat and globally conformal on length scales of ∼ 1nm. When the con-
tact area is sufficiently large, the surfaces bind via van der Waals forces, hydrogen bonds,
and dipole-dipole interactions. Hydroxide catalysis bonding also requires optical contact
between the surfaces, but the use of liquid bonding catalysts or filler materials can some-
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what relax the stringent flatness requirements. Elastic deformation of large pieces can also
compensate for local roughness, but this is negligible on the millimeter to centimeter di-
mensions that are relevant for most cells. The contact area for vapor cell bonds is typically
small (less than 1 cm2), with the result that optical wringing is noticeable during the bond-
ing process but does not contribute substantially to the final bond strength. If the pieces
do wring together during preparation, one should be careful not to let them rub or scrape
against each other, since the resulting surface damage may reduce the final contact area
and therefore the final bond strength. In a dirty environment, surface contaminants such as
grease and dust particles disrupt the bond primarily by reducing the overall contact area;
for this reason we found it necessary to work in a clean-room environment when bonding
cells.

Hydroxide-catalysis bonding is a chemical process, and even in a clean environment
residual surface contamination can easily prevent or weaken a bond. In many cases, the
use of water or an aqueous bonding catalyst exploits a hydrophilic (or hydrophobic) sur-
face which must be specially prepared. Some silicon-bonding techniques (e.g., hydroxide-
catalysis bonding) require an oxide layer on the surface, while others (e.g., direct bonding)
may require that native oxide layers be completely removed. In cases where the oxide
layer forms part of the bond, the mechanical strength of bonded parts may depend on its
thickness. In particular, thermal oxides can be grown on silicon substrates under controlled
conditions in order to maximize bond strength [106]. Thin-film coatings of silicon oxides
may also be deposited in vacuum to achieve the same effect.

A generic feature of most pre-bonding surface preparation for silicon substrates is the
RCA cleaning protocol [111] (although it may subsequently be necessary to replace the
removed oxide layers). Ultrasonic cleaning in solvent solutions, use of piranha solution,
and flushing with deionized water are also common steps in surface preparation of both
silicon and glasses. It is frequently desirable to work at a laminar flow bench, or in a
cleanroom environment to prevent particle contamination.

5.4.2 Diffusion Bonding

Typically used for bonding metals, diffusion bonding relies on permanent modifications of
the bonded surfaces under high temperature and pressure [112]. Plastic deformation should
occur only on the scale of surface asperities, which by deforming increase the contact area
during the welding process (this deformation is controlled by the applied interfacial pres-
sure). At high temperature and pressure, the “cold flow” is accelerated such that voids are
compensated and the contact area approaches 100%. The bonding mechanism is mutual
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diffusion of material from each side across the boundary, which occurs at a useful rate only
after the surfaces have deformed to match each other (unless the surface quality is initially
very high). Diffusion bonding can result in very large residual thermal stresses when dis-
similar materials are joined, since the bonding typically takes place at temperatures several
hundred degrees above the intended operating temperature for the bonded part.

5.4.3 Anodic Bonding of Glass to Silicon

For glass containing a sufficient fraction of alkali, high temperature and high voltage can
be applied to force cation drift away from the interface (into the glass and away from the
silicon). This results in a thin depletion zone at the interface into which oxygen anions drift.
A positive volume charge is induced in the silicon, resulting in electrostatic attraction. The
electrochemical process which produces an irreversible bond also involves the formation
of siloxane bridges at the interface [113]. Aluminosilicate glasses have been anodically
bonded, typically by introducing an alkali such as lithium into the glass composition [114].
Anodic bonding of glass to metals and silicon oxide films has also been demonstrated
[115–117].

5.5 Cell Materials

Three glass types were used for the bodies of various cells:

1. Pyrex (Borosilicate) This is often actually Kimble Kimax or Schott DURAN, but
we follow common usage by referring to any of these borosilicate glasses as “pyrex”.
(PYREX is the trademark of a borosilicate produced by Corning, and should not be
confused with Pyrex – a tempered soda-lime glass used for kitchenware.) These
all conform to the standards laid out in ASTM E438 [118], which include a rela-
tively low softening point (815-820◦C) and moderate thermal expansion coefficient
(3.3 ppm/◦C). This means that they are relatively forgiving to work with, and for
this reason pyrex is the preferred material for components that must be worked with
a torch in the lab. Pyrex is rich in sodium, and can be anodically bonded to silicon; we
have also successfully bonded it to silicon and sapphire via silicate-assisted hydrox-
ide catalysis. It is relatively impermeable to helium, and can be antirelaxation-coated
with organic silanes such as OTS. Valves, stopcocks, and commercial components of
any complexity are almost invariably made of pyrex, and it is necessary to provide a
matching layer when these are used in apparatus constructed from a glass type with
different thermal expansion properties. Pyrex does not transmit short-wavelength
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ultraviolet light, but has relatively good optical properties in the visible and near-
infrared.

Pyrex cells, including those containing close to an atmosphere of gas, can be sealed
using an oxygen-propane torch with the cell body at room temperature. Super-
atmospheric cells can be produced by submerging part of the cell in liquid nitrogen
while the cell is “pulled off”, to increase the internal atomic/molecular number den-
sity without increasing the pressure. The pressure increases after the cell warms up,
so it is important to properly anneal the pull-off point.

2. Quartz (GE type 214 or similar) Pure SiO2 has a high softening point (1683◦C) and
very low thermal expansion (0.55 ppm/◦C). Thermal expansion matching to pyrex
requires several intermediate layers (a “graded seal”), but is routine. Quartz is quite
permeable to helium, is fairly electrically resistive (though less so than GE-180),
and has very low alkali content. Optical transmission is high from 200 nm into the
infrared. Commercial quartz glass such as GE-214 can be welded to uncoated UVFS
optical windows (such as Thorlabs WG41010).

Quartz cells can be sealed with some difficulty using an oxygen-propane flame. Due
to the high softening point of the glass, even a low-pressure gas cell risks “blowing
out” at the pull-off due to the substantial increase of internal pressure when the gas is
heated. This can be avoided either by the cryogenic method described above, or by
attaching a quartz cell to a pyrex stem and sealing the pyrex portion.

3. GE type 180 (Iron-Free Aluminosilicate) Available mainly in the form of stock
tubing with 15mm diameter, is produced by General Electric as an automotive glass
and used in that industry for lamp bulbs. It has a relatively high softening point
(1015◦C) and thermal expansion coefficient (4.5 ppm/◦C), and is notoriously sus-
ceptible to reboil and thermal shock. These properties make it challenging to work,
but it is nevertheless a preferred material in experiments that rely on polarized noble
gas nuclei, since when properly cleaned it does not require an antirelaxation coating.
(The reasons for this remarkable feature are somewhat unclear; we remark only that
the few GE-180 cells made in our lab with OTS coatings did not significantly out-
perform the more typical uncoated ones.) GE-180 can be thermally matched to pyrex
with uranium glass. GE-180 is additionally impermeable to helium, very electrically
resistive, and low in alkali content. We were not able to anodically bond GE-180
to silicon (attributable to low alkali content), but the polished surface is sufficiently
oxygen-rich to anchor siloxane bridges; GE-180 bonds well to silicon via silicate-
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assisted hydroxide catalysis. It does not efficiently transmit short-wavelength ultra-
violet light, but has relatively good optical properties in the visible and near-infrared.

GE-180 cells can be sealed with an oxygen-propane torch, similarly to pyrex albeit
at a somewhat higher temperature. The higher working temperature means that one
must work rapidly to avoid a blow-out when sealing cells that contain gas; this occurs
when hot gas inside the cell expands, producing a bubble of soft glass that can easily
pop and expose the interior of the manifold to atmosphere. This time constraint
leads to a somewhat awkward compromise when working with GE-180, since the
glass should be gradually warmed and cooled to avoid thermal shock. The annealing
process after the cell is sealed is critical, and improperly annealed cells often crack
when cooled (or later, when temperature-cycled in an experiment). In practice, the
cell is pulled off as rapidly as possible, and then annealed at a temperature below the
softening point.

25mm

Figure 5.6: (Left) GE-180 components prepared for a sealed two-chamber EDM cell. The
bent tube is intended to regulate diffusion between the chambers and prevent metallic ru-
bidium from migrating into the cylindrical chamber where high voltage is applied. (Right)
Finished cell installed in an experiment.

5.6 Silicate Assisted Hydroxide-Catalysis Bonding

This section describes the protocol we developed for silicate assisted hydroxide-catalysis
bonding of cylindrical cells made from dissimilar materials. Most of our bonded cells
were made with GE-180 cylindrical bodies, with test-grade (surplus) doped silicon wafers
serving the combined function of end caps and electrodes in EDM measurements. We have
also made pyrex/silicon cells while developing the bonding technique for GE-180/silicon
cells. Pyrex/quartz and pyrex/sapphire cells were made for two-photon spectroscopy of
xenon, in order that the cell body could be easily formed and still accommodate ultraviolet-
transmitting windows on two perpendicular axes.

144



5.6.1 Polishing

The principal challenge associated with bonding flat end caps to a cylindrical cell body is
polishing the annular edge of the cylinder sufficiently flat. All of the cells discussed here
were polished by hand using silicon carbide and diamond; this proved adequate after some
iterative optimization to determine an appropriate polishing recipe. GE-180 is slightly more
brittle than pyrex, so greater care is required to prevent edge chipping, but otherwise the
polishing recipe does not change for different glasses.

We obtain cylindrical cell bodies from the glass shop, after they are cut on a grinding
wheel and rough-polished with wet 300 grit or 600 grit silicon carbide. In our lab, we iter-
atively fine-polish the edges using silicon carbide sanding sheets and water on a polishing
flat. One must be careful to move the piece in a pseudo-random pattern, without catching
an edge and damaging the sanding sheet. Starting with 300 grit, we move up to 2000 grit
in steps of 200-300 and clean the polished edge with water and organic solvents after each
step. At 2000 grit, the surface is visibly polished to a specular finish but may have resid-
ual fine scratches. These are removed with diamond polishing sheets of 2000 grit (1 µm
particle size) and 2500 grit (0.1 µm particle size), and/or 2500 grit diamond lapping paste.
Polishing is complete when no defects are visible on the surface under bright light, and no
cloudiness is visible in the water on the polishing sheet. The polished edges are cleaned
with optics-grade solvents and lens paper.

Most of the silicon wafers used for cell fabrication are single-side polished; for cells that
required a second surface polish (e.g., to attach a valve over a hole in the wafer), a chemical
mechanical planarization system (Strasbaugh 6EC) is used in the Lurie Nanofabrication
facility at the University of Michigan.

5.6.2 Surface Cleaning and Wafer Preparation

In early attempts we were occasionally able to bond silicon/pyrex cells in a laminar flow
hood in our lab, but complete silicon/GE-180 bonds were only achieved in a cleanroom
at the University of Michigan Lurie Nanofabrication Facility. (Bonding is performed in a
lab whose particle count is between Class 100 and Class 1000; the RCA clean and thermal
oxidation are performed in a Class 100 lab.) So far, every attempt in the cleanroom has pro-
duced a mechanically strong and vacuum-tight bond; it appears that particle contamination
was the most important limitation in our lab, and that (with adequate surface preparation)
the technique is surprisingly robust.

Glass components are cleaned in our lab with organic solvents and piranha solution,
then transported to the cleanroom in an evacuated plastic container. In the cleanroom they
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are cleaned again with either piranha or a CO2 snow jet [119], and surface-activated with
O2/Ar plasma in a commercial plasma cleaner (Glen 1000P). The cell is bonded within∼15
minutes of surface activation, since the effect is temporary and chemical reactions with the
ambient environment will slowly restore the surface bonds and layers that were removed
by plasma cleaning.

Bare silicon reacts immediately with oxygen and other atmospheric contaminants, with
the result that silicon wafers invariably have a contaminated and oxidized surface unless
specially prepared. The “native oxide” is actually sufficient in many cases to anchor
hydroxide-catalysis bonds, and in most cases we simply cleaned the wafers in the same
way that the glass was prepared. However, the best practice is to replace the native ox-
ide with a good quality thermal oxide. Thermal oxidation of silicon requires meticulous
cleaning in a pristine environment; we use the RCA cleaning protocol, which is the in-
dustry standard in semiconductor manufacturing [111]. It comprises three steps, which we
summarize here:

1. Organic clean and particle removal: Wafers are submerged for 10-20 minutes in a
hot (85◦C) solution of deionized water, ammonium hydroxide, and hydrogen perox-
ide in 5:1:1 ratio by volume. This removes organic residues and particles adhered to
the wafer surface.

2. Oxide removal: Wafers are etched for 30 seconds in dilute hydrofluoric acid (10:1
or 100:1) at room temperature. This step removes the oxide layer and some metallic
contaminants.

3. Ionic clean: Wafers are submerged for 10-20 minutes in a hot (85◦C) solution of
deionized water, hydrochloric acid, and hydrogen peroxide in 6:1:1 ratio by volume.
This removes residual metallic contamination and leaves a thin passivating layer that
protects the cleaned surface from contamination.

The cleaned wafers are rinsed with flowing water and dried, then oxidized in a dry
furnace tube at 1000◦C for 125 minutes. This produces a 100 nm layer of SiO2, which
visibly changes the color of the wafer surface to a deep purple. After the oxide has grown
and the wafer is cooled, the surface is activated by plasma cleaning simultaneously with
the glass.

5.6.3 Bonding

The activated wafers and glass are brought to a wet bench, where a bonding solution of five
parts distilled water and two parts aqueous sodium silicate (Sigma-Aldrich 338443) has
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been pre-mixed in clean glassware. A micropipette is used to apply the bonding solution
to the glass edge in the amount of 1 µl/cm2 of surface area to be bonded. (For most of
our cylindrical cells, the surface area of the polished edge is approximately 1.5 cm2.) The
glass is pressed onto the silicon wafer until whetting is observed (see figure 5.7), and left
under weight to cure for three days. After three days the cell can be safely handled, and
we typically allow two to three weeks before the bond is assumed to be fully cured (further
investigation is required to quantify bond strength as a function of curing time). The second
wafer can be bonded after a few days or (preferably) a week; if it is bonded sooner, water
migrating inward from the bond interface becomes trapped inside the cell and cannot easily
escape.

glass

cylinder

silicon wafer

bond

area

Figure 5.7: Schematic illustration of the first silicon wafer being bonded to an EDM cylin-
der. The bond area of about 1.5 cm2 is determined by the wall thickness of the glass tubing,
which is polished to an optical finish by hand. Whetting at the interface is visible through
the glass when bonding solution is applied to the edge and the pieces are pressed together.
Once pressed together, the pieces should not be allowed to move until the bond has cured,
and may be weighted to maintain good contact.

Bond strength has not been systematically investigated for the geometries relevant here;
in fact, we typically apply a layer of epoxy over the bond on the outside of the cell as a
precautionary measure. The bonds tested to failure could be broken (with some difficulty)
by hand. These do not usually fail at the bond itself, but damaged the silicon wafer and
left a ring of silicon stuck to the glass edge. This seems to indicate that a good hydroxide-
catalysis bond is stronger than bulk silicon.

5.6.4 Sapphire and Quartz Bonding for Spectroscopy Cells

Pyrex cells bonded with uncoated sapphire and quartz optical windows are also prepared
according to the above protocol. The sapphire and quartz windows are cleaned and surface-
activated in the same manner as the glass, and the bonding and curing process proceeds
identically.
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One caveat concerns the very different thermal expansion coefficients of pyrex (3.3 ppm
per ◦C) and sapphire (5.3 ppm per ◦C, perpendicular to the optical axis). The cell with sap-
phire windows bonded successfully, and rapidly pumped out to a base pressure below 10−7

Torr (this is typical of a good-quality manifold on the vacuum station used for cell fill-
ing). However, subsequent baking appears to have broken the bond layer due to differential
thermal expansion between the pyrex body and the sapphire windows. The cell was baked
overnight at 245◦C, after which it no longer held vacuum. Application of a high vacuum
leak sealant (VACSEAL) to the sapphire-pyrex interface resulted in the sealant being vis-
ibly drawn into the cell: the leaks were too large to seal effectively. Future efforts in this
direction may benefit from baking all surfaces before bonding them, and limiting the range
of temperatures applied to the completed cell.

5.7 Further Thoughts and Improvements

It is possible to mount the glass cell body in a polishing jig for automated planarization,
but we did not pursue this beyond designing an adapter for an existing jig, since hand-
polishing does not appear to be a limiting factor in our bonding protocol. For studies
involving higher-volume cell production or investigating the repeatability of the technique,
automated polishing would be advisable.

A promising direction for further efforts is the development of cells whose components
cannot be bonded at high temperatures. This includes materials with very different thermal
expansion properties (since hydroxide-catalysis bonding occurs at room temperature, there
is no residual thermal stress), and windows or coated components that would be damaged
by glass working. When cleaning and bonding is performed in a cleanroom environment,
it is possible to prepare good quality cells without baking under vacuum. (One must, how-
ever, ensure that the components are not re-contaminated after they have been cleaned.)
A final possibility is the development of cells for fluorescence spectroscopy, in which the
windows for excitation and fluorescence are made from different materials that are selected
to enhance transmission or reject background for each path independently.
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CHAPTER 6

Conclusions

In this dissertation, we have presented experimental and theoretical progress in the de-
velopment of optical magnetometry using nuclear spins and multiphoton transitions. In
particular we have demonstrated the feasibility of two-photon magnetometry using noble
gases and cw or pulsed lasers; obtained fluorescence signals from two-photon excitation of
ytterbium, rubidium, and xenon; and developed a new technique for cell fabrication that
accommodates both deep-ultraviolet optical transmission and long nuclear spin polariza-
tion lifetimes. In this chapter we summarize the main contributions of this work, and place
them in context with the next steps required for future developments.

6.1 Theoretical Material

The theoretical material presented mainly surveys or reformulates existing work. We have
derived simple analytical expressions for two-photon excitation amplitudes involving one
or several classical optical fields, in which the contributions from an arbitrary number of
intermediate states are treated using first-order perturbation theory. Angular momentum
coupling and selection rules were discussed, and a model presented to calculate the mag-
nitude of a signal arising from paramagnetic rotation. The optical spectra of modelocked
pulsed lasers were briefly considered to illustrate the experimental possibility of high spec-
tral resolution with a reasonable signal size; a sum formula was also given, relating the
power per mode to the total average power for transform-limited Gaussian pulses. Magne-
tometer sensitivity was discussed with respect to the spatial and temporal bandwidth of a
measurement. The geometric phase arising from adiabatic evolution of parameters in the
Hamiltonian was derived in a general form, and then discussed in the specific context of
false EDM signals due to motional magnetic fields.
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6.2 Experiments with CW Laser Sources

We have presented measurements of one-photon transitions in a ytterbium atomic beam, in-
cluding measurements of excited state Zeeman splittings as a function of applied magnetic
field strength. We have also reported optical pumping of the 171Yb nuclear spin with optical
detection far from resonance, and discussed the nuclear polarization signal’s dependence
on the polarization of both pump and probe beams.

Two-photon spectra of several ytterbium isotopes were presented, and methods devel-
oped to disentangle the contributions from overlapping resonance lines. We have discussed
measurements of ytterbium isotopes with nuclear spin I= 0 as a comparative standard for
measurements using 171Yb (I= 1

2
). Measurements analogous to the one-photon case were

presented and analyzed to determine the effect of various pump and probe polarizations.
One-photon Doppler-free spectroscopy of mercury was presented, in the context of

laser frequency stabilization using an error signal generated by magnetically-induced
dichroism. An unsuccessful attempt to detect a two-photon resonance in xenon was briefly
mentioned, in which the the 253.7 nm laser from the mercury measurements was detuned
to operate at 256.0 nm. We also reported the first signals from a separate experiment, which
successfully probed the 256.0 nm xenon transition using a different laser with higher output
power.

The methods developed to quantify asymmetries introduced by polarization errors in
the pump or probe beam may be applied to the analysis of light shifts and Bloch-Siegert
shifts, and to the determination of hyperfine and isotope structure in the spectra of atoms
whose optical transitions have not been studied in detail. This is particularly important in
the case of radon, for which detailed spectral data is lacking.

Further improvements to the cw ytterbium experiments will rely on improved stabiliza-
tion of the probe laser frequency and power, without sacrificing the same qualities in the
pump laser. Similar experiments using the 399 nm 1S0→ 1P1 transition for optical pump-
ing, and/or using one-photon transitions to detect nuclear polarization due to TPOP, would
then be possible. Improved magnetic shielding of the detection PMT would enable an RF
resonance experiment to optically detect the quenching of nuclear polarization.

The xenon measurements would be most significantly improved by an increase of the
signal-to-noise ratio. This could be accomplished by spatial and spectral filtering of the
probe beam, and by additional spectral filtering in the fluorescence path. An experiment
with improved signal-to-noise could be straightforwardly modified for optical detection of
nuclear polarization in xenon, which is most easily produced by SEOP in a cell containing
rubidium. Such an experiment could then incorporate an NMR component, for optical
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detection of nuclear spin precession. Cells containing isotopically enriched 129Xe will
have simpler optical spectra and larger polarization signals than those containing xenon
of natural isotopic abundance. Such experiments can be repeated using the 1S0→ 2[3/2]2
two-photon transition in xenon at a wavelength of 252.5 nm, which lies within the tunable
range of the cw laser system.

6.3 Experiments with Pulsed Laser Sources

We have presented fluorescence measurements with ytterbium and rubidium, in which
two-photon transitions were excited using picosecond pulses from a Ti:sapphire oscilla-
tor. These signals were discussed in terms of the RF parameters that constrain modelocked
laser spectra, and the need for improved laser stabilization was established. Sinusoidal
modulation of the rubidium fluorescence rate was demonstrated, as a function of the rota-
tion angle of a quarter-wave plate in the probe beam.

We have also reported on similar measurements in ytterbium, for which the picosec-
ond source was replaced by a femtosecond oscillator. Our analysis showed modulation of
the fluorescence spectrum when the repetition rate of the laser was scanned. The signal
size was consistent with rapid drift of the laser spectrum, which would average out the
contributions from underlying resonance peaks (reducing spectral resolution).

Improvements to these experiments will rely on active laser stabilization, and (espe-
cially for femtosecond spectroscopy) also on chirp compensation. For the picosecond laser,
a piezoelectric transducer should be installed behind a cavity mirror and used to actively
stabilize the repetition rate. Residual spectral drift can be compensated by placing an AOM
in the beam path outside the cavity, and modulating its drive frequency using an error signal
generated from spectroscopy of a potassium resonance.

The scheme proposed for stabilization of the picosecond pulsed laser can also be ap-
plied to xenon spectroscopy with picosecond pulses. In this scenario the 256.0 nm light is
generated by frequency tripling the 768 nm output of the Ti:sapphire oscillator; a different
potassium resonance can be used as an absolute frequency reference for stabilization of the
infrared spectrum. Experiments analogous to the cw case may be performed with xenon,
given a sufficiently stable source of 256.0 nm pulsed light.

6.4 Cell Development and EDM Experiments

We have developed a method of producing cylindrical vapor cells from dissimilar materi-
als, using silicate assisted hydroxide-catalysis bonding. We reported on construction and
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testing of cells that consist of an open glass cylinder (aluminosilicate or pyrex) sealed by
end caps made from silicon, sapphire, quartz, or pyrex. We have discussed the use of alumi-
nosilicate/silicon cells in an experiment studying the nuclear EDM of 129Xe, and observed
that certain material combinations represent a favorable compromise among the require-
ments associated with nuclear polarization, high voltage, and optical transmission.

Future efforts in cell development would refine the silicate bonding protocol, and in
particular investigate the role of surface oxides and doping on the bond strength of alu-
minosilicate joined to silicon. Automated polishing of the glass cylinders would enable
significantly more rapid development and prototyping, and may also improve polarization
lifetimes by reducing surface area. Improved cleaning recipes may also contribute to longer
polarization lifetimes. The use of transparent conductive films such as indium tin oxide
(ITO) has not been investigated in this context, but may be compatible with hydroxide-
catalysis bonding.
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APPENDIX A

The Two Level Problem

The evolution of a two-state quantum system in a time-harmonic potential is a classic calcu-
lation in time-dependent perturbation theory. It is the prototype for semiclassical treatments
of the interaction between matter and electromagnetic radiation, and standard presentations
are found in many textbooks [55, 120, 121] and research articles [122–124]. Our discus-
sion here is motivated by the fact that harmonic perturbations applied to two-level systems
accurately describe both magnetic resonance in spin-1

2
nuclei, and optical excitation of

electronic states when only two levels are resonantly coupled. Moreover, when intermedi-
ate states can be adiabatically eliminated from the dynamics of two-photon excitation, this
formalism also applies to the resulting effective two-level problem. Thus, all of the essen-
tial atom-field interactions that are relevant to optical magnetometers can be expressed as
different particular cases of a general phenomenon.

We emphasize that many features of this problem have close analogies – or are com-
pletely equivalent – in the various particular cases. These include the role of field polar-
ization in angular momentum coupling, and selection rules associated with the transition
matrix elements that determine which transitions are allowed for a given field polarization
and quantization axis. Off-resonant corrections, such as light shifts (AC Stark and Zeeman
effects) and Ramsey-Bloch-Siegert shifts [124] also occur in a similar fashion when the
rotating-wave or two-level approximations are not exact. (The precise form of such per-
turbative corrections depends on the structure of the transition matrix elements involved,
which can vary substantially between particular cases.) Finally, effects associated with
smooth variation of the field envelope and the inclusion of multiple oscillating perturba-
tions at different frequencies (i.e., different field modes) are relevant in all cases, although
certain unique features arise in the case of multiphoton transitions that have no counterpart
in any single-quantum process.

Solutions are most readily obtained in the interaction picture. Suppose that we already
know the eigenstates and eigenvalues for a time-independent Hamiltonian H0, and wish to
know the effect of an additional time-dependent interaction V(t), where H0 and V (t) may
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also depend on position coordinates and other parameters. We can expand an arbitrary state
vector |ψ〉 in Schrödinger-picture eigenstates |n〉 as

|ψ〉 =
∑
n

an(t) |n〉 .

In the presence of H0 alone the amplitudes an evolve according to the time-dependent
Schrödinger equation as

i~ȧn(t) = ~ωnan(t) ,

where ~ωn is the energy eigenvalue associated with |n〉. The state amplitudes in the inter-
action picture are designated cn(t), and they obey the relation cn(t) = an(t)eiωnt. This has
the effect of removing the “energy term” from the equation of motion when we include the
interaction potential V (t):

i~ȧn = ~ωnan +
∑
m

Vnmam (A.1)

i~ċn =
∑
m

Vnmcme
iωnmt, (A.2)

where Vnm(t) = 〈n|V (t) |m〉 and ωnm = ωn − ωm. In the same way, we can absorb terms
such as light shifts within the interaction picture; this amounts to a simple redefinition of
the energy ~ωn whenever the equation of motion for ċn includes terms proportional to cn.
Note that the state populations are identical in the Schrödinger and interaction pictures,
since |cn|2 = |an|2 .

The simplest case obtains when Vnm(t) = Aeiωt. For real and constant A we need only
solve a second-order equation with constant coefficients, and the solution for all times is
analytic. This well-known result is originally due to Rabi [123]; we will consider a more
general case, where

Vnm(t) =
∑
j

V (j)
nm(t)Aj(t) + c.c. , (A.3)

and the time- and space-dependence of each term is separated into “rapid” and “slow”
factors. The rapid factors V (j)

nm(t) are assumed to vary harmonically, and we have

V (j)
nm(t) ∝ ei(kj ·r−ωjt+φj) , (A.4)
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where the parameters kj and ωj will usually correspond to the propagation vector and
angular frequency of a plane-wave electromagnetic field, respectively. The variation of
the envelope functions Aj(t) is assumed to be slow compared to the carrier oscillations
described by this exponential phase factor. The phases φj are constant in time, but may
depend on other parameters such as position or static field strengths. To model magne-
tometers we will sometimes also allow slow time variations of the matrix elements V (j)

nm(t),
corresponding to ground state Larmor precession.

For a system consisting of two atomic states, we now have

~ċ1 = −i
∑
j

(
V

(j)
12 (t)Aj(t) + c.c.

)
e−iω0tc2 = −iV12e

−iω0tc2 (A.5)

~ċ2 = −i
∑
j

(
V

(j)
21 (t)Aj(t) + c.c.

)
eiω0tc1 = −iV21e

iω0tc1 , (A.6)

where we taken ω0 ≡ ω21 ≥ 0 without loss of generality. In general V12 6= V21, but
we can force any single matrix element to be real by an appropriate choice of the relative
phase between the electronic wavefunctions. (For electric dipole transitions, this has the
consequence that Vnm can be symmetrized if every field mode in the sum A.3 has the
same polarization. If not, then the phase choice that produces a real matrix element for
one polarization generally requires a complex matrix element for any linearly independent
polarization.)

At this point it is common to make the rotating wave approximation (RWA), which
consists of dropping the terms proportional to V (j)

12 in equation A.5 and those proportional
to V

(j)∗
21 in equation A.6. Since these terms oscillate at the frequencies ω0 + ωj , their

average contribution on timescales much larger than an optical cycle can be neglected in
what amounts to a coarse-grain time average. The residual lowest-order effect ignored
by the RWA is a shift in the apparent energy of each state known as the Bloch-Siegert
shift [124, 125], which to lowest nonvanishing order is

∓ ~
∑
j

|Aj|2V (j)
12 V

(j)∗
21

ω0 + ωj
, (A.7)

where the upper (lower) sign is taken for state 1 (2) and we have assumed that terms oscil-
lating at the difference frequencies ωj − ωj′ can be neglected.

By differentiating equation A.6 and substituting into equation A.5 (or vice-versa), we
obtain separated second-order equations of motion for c1 and c2:
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c̈1 −

[
V̇12

V12

− iω0

]
ċ1 +

V12V21

~2
c1 = 0

c̈2 −

[
V̇21

V21

+ iω0

]
ċ2 +

V12V21

~2
c2 = 0 .

(A.8)

These equations transform into each other under (1 ↔ 2), if we are careful to recall that
ω0 = ω21 = −ω12 . The terms that involve V21 may be quite complicated functions of
time. However, it is sometimes possible to transform a second-order ordinary differential
equation into a form where the coefficients are constant, and which is therefore easily
solved in closed form. Given an equation

d2y

dx2
+ p(x)

dy

dx
+ q(x)y = 0 , (A.9)

such a transformation is possible if the quantity

P ≡ q′(x) + 2p(x)q(x)

q(x)
3
2

(A.10)

is independent of x. If this condition holds, then a change to the variable

z ≡
∫ √

q(x)dx (A.11)

results in a constant-coefficient second-order equation for y(z),

d2y

dz2
+
P

2

dy

dz
+ y = 0 , (A.12)

from which it is straightforward to extract a formal solution for y(x).
Equation A.10 may be regarded as a constraint on the mathematical functions Vnm(t)

for which analytic solutions are easily obtainable; this in turn jointly constrains the quan-
tities in each term of the sum A.3 that defines Vnm(t). A full solution is not available in
general, but some cases of interest are straightforward. Equation A.10 is clearly satisfied if
q′(x) + 2p(x)q(x) = 0; for the two-level problem given by equations A.8, this constraint is
equivalent to

V12V̇21 − V̇12V21 + 2iω0V12V21 = 0 . (A.13)

The constraint is identical for both equations, since the left-hand side differs only by an
overall minus sign. We also note that the first two terms cancel in the case where V12 = V21,
i.e. when V is symmetric.
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Assuming the phases φj are constants and the Ej are real functions of time, we have

V12 =
∑
j

Aj(t)
(
V

(j)
12 + V

(j)∗
12

)
(A.14)

V̇12 =
∑
j

(−iωj)Aj(t)
(
V

(j)
12 − V

(j)∗
12

)
+
∑
j

Ȧj(t)
(
V

(j)
12 + V

(j)∗
12

)
, (A.15)

and similarly for V21. Upon substitution into equation A.13, the constraint becomes

0 =
∑
j,k

[
2iω0AjAk

(
V

(j)
12 + V

(j)∗
12

)(
V

(k)
21 + V

(k)∗
21

)
+ iωjAjAk

(
V

(j)
12 − V

(j)∗
12

)(
V

(k)
21 + V

(k)∗
21

)
− ȦjAk

(
V

(j)
12 + V

(j)∗
12

)(
V

(k)
21 + V

(k)∗
21

)
− iωjAjAk

(
V

(j)
21 − V

(j)∗
21

)(
V

(k)
12 + V

(k)∗
12

)
+ȦjAk

(
V

(j)
21 + V

(j)∗
21

)(
V

(k)
12 + V

(k)∗
12

)]
, (A.16)

in which the third and final lines evidently cancel if V (j)
12 = V

(j)
21 for every j, or vanish if

none of the Aj depend on time. Supposing one of these to be true, rearranging indices, and
collecting terms, we obtain:

0 =
∑
j,k

AjAk

[
2iω0

(
V

(j)
12 V

(k)
21 + V

(j)∗
12 V

(k)
21 + V

(j)
12 V

(k)∗
21 + V

(j)∗
12 V

(k)∗
21

)
+ iωj

(
V

(j)
12 V

(k)
21 − V

(j)∗
12 V

(k)
21 + V

(j)
12 V

(k)∗
21 − V (j)∗

12 V
(k)∗

21

)
−iωk

(
V

(j)
12 V

(k)
21 + V

(j)∗
12 V

(k)
21 − V

(j)
12 V

(k)∗
21 − V (j)∗

12 V
(k)∗

21

)]
= i
∑
j,k

AjAk

[
(2ω0 − ωj − ωk)V (j)∗

12 V
(k)

21

+ (2ω0 + ωj + ωk)V
(j)

12 V
(k)∗

21

+ (2ω0 + ωj − ωk)V (j)
12 V

(k)
21

+(2ω0 − ωj + ωk)V
(j)∗

12 V
(k)∗

21

]
. (A.17)
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A.1 Rotating Wave Approximation

We now apply the RWA, with the result that the condition A.17 reduces to

0 = i
∑
j,k

AjAk(2ω0 − ωj − ωk)V (j)∗
12 V

(k)
21 , (A.18)

which is easily satisfied if ωj = ω0 for every j. This restricted solution allows us to develop
a useful time-domain model of pulsed excitation, including timing and phase fluctuations.
The interaction matrix elements then have the form

V12 = eiω0t
∑
j

χ∗jAj(t) (A.19)

V21 = e−iω0t
∑
j

χjAj(t) , (A.20)

where χj = V
(j)

12 e
−iω0t is the “leftover” part of V (j)

12 when the rapid time-dependence is
factored out. Thus,

V12V21 =
∑
j,k

χjχ
∗
kAj(t)Ak(t) , (A.21)

and we can transform to the variable

z =
1

~

∫
dt
√
V12V21 (A.22)

to arrive at the equation of motion

c′′2(z) + c2(z) = 0. (A.23)

The solution is

c2(z) = A cos(z) +B sin(z) , (A.24)

and thus c2(t) is trivially determined when we have an explicit expression for z(t).
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A.2 Time-Separated Resonant Pulses

A case of particular interest occurs when the envelope functions in equation A.20 do not
overlap in time. In that case only diagonal terms in the sum survive in equation A.21, since
Aj(t)Ak(t) ≈ δjkA

2
k(t), and the integrand V12V21 may be simplified by bringing the square

root inside the sum. Thus, we have

z =
1

~
∑
j

∫
dt|χjAj(t)| , (A.25)

and formally,

c2(t) = A cos

[
1

~
∑
j

∫ t

dt′|χjAj(t′)|

]
+B sin

[
1

~
∑
j

∫ t

dt′|χjAj(t′)|

]
. (A.26)

If we now model the interaction as a series of time-separated pulses,∫ t

dt′|χjAj(t′)| = ~A(t− Tj) , (A.27)

then

c2(t) = A cos

[∑
j

A(t− Tj)

]
+B sin

[∑
j

A(t− Tj)

]
. (A.28)

The constants A,B can be determined if the values of c1 and c2 are known at some in-
stant t0, together with the values of their derivatives ċ1(t0), ċ2(t0) (from equations (A.5)
and (A.6)).

A.3 Monochromatic Field with Constant Amplitude

The other situation in which the equations of motion can be easily solved is when only one
field contributes to the excitation; this is the classic solution originally due to Rabi [123].
We retain the RWA, but now the constraint A.13 cannot be satisfied and we must show
instead that

P = ~
V12V̇21 − V̇12V21 + 2iω0V12V21

(V12V21)
3
2

= constant , (A.29)

where now
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V12 =
~Ω∗

2
eiωt (A.30)

V21 =
~Ω

2
e−iωt , (A.31)

and we do not assume ω = ω0. The quantity Ω is known as the Rabi frequency, here
assumed to be a complex constant. We also define the frequency detuning from exact
resonance, δ = ω0 − ω. With these definitions, equation A.29 reduces to

P =
4iδ

|Ω|
, (A.32)

which is constant by assumption. We again transform to an auxiliary variable,

z = ~−1

∫
dt
√
V12V21 =

|Ω|t
2

, (A.33)

and obtain the constant-coefficient equations of motion

c′′1(z) +
P

2
c′1(z) + c1(z) = 0 (A.34)

c′′2(z)− P

2
c′2(z) + c2(z) = 0 . (A.35)

The roots of the associated characteristic equations are

for c1: λ
(±)
1 = − iδ

|Ω|
± iΩ̃

|Ω|
(A.36)

for c2: λ
(±)
2 =

iδ

|Ω|
± iΩ̃

|Ω|
, (A.37)

where we have defined the generalized Rabi frequency Ω̃ =
√
δ2 + |Ω|2. The solutions as

functions of time are then
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c1(t) = e−i
δt
2

{
c1(0)

[
cos

Ω̃t

2
+
iδ

Ω̃
sin

Ω̃t

2

]
− c2(0)

iΩ∗

Ω̃
sin

Ω̃t

2

}
(A.38)

c2(t) = ei
δt
2

{
−c1(0)

iΩ

Ω̃
sin

Ω̃t

2
+ c2(0)

[
cos

Ω̃t

2
− iδ

Ω̃
sin

Ω̃t

2

]}
, (A.39)

where we assume that the amplitudes are known at t=0.
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APPENDIX B

Ramsey Interferometry

This section closely follows the famous theoretical treatments of Ramsey [122] and Rabi
[123], for the time evolution of a two-level system subjected to resonant or near-resonant
harmonic perturbations. In contrast to appendix A (where the solution is established for all
times), we solve for certain values of several parameters in the equations of motino, and
then allow these parameters to take on different values at various times. In this way, the
two oscillating fields of Ramsey’s model can be readily generalized to accomodate multiple
pulses and phase fluctuations; smooth pulse envelopes are considered in appendix A. We
again emphasize that the solution, originally envisioned for NMR in molecular beams,
applies equally well to any effective two-level system. In particular it provides an excellent
description of two-photon excitation by pulsed optical fields, when the intermediate states
are eliminated from the equations of motion and the RWA has been made.

In this section, we work in the Schrödinger picture and parameterize the Rabi frequency
as a real amplitude multiplied by a complex phase factor. Radiative decay is neglected.

B.1 Two Square Pulses

Suppose we have a two-level system in a pure state, whose wavefunction is

Ψ(t) = a1(t)ψ1 + a2(t)ψ2, (B.1)

where the energy eigenvalues are E1 = ~ω1 and E2 = ~ω2. Let these levels be coupled by
the interaction V (t), which has the matrix elements
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V11 = V22 = 0

V12 = ~bei(ωt+φ)

V21 = ~be−i(ωt+φ) . (B.2)

We interpret b = Ω/2 as one-half of the (real and constant) Rabi frequency Ω, ω as the
oscillation frequency, and φ as the phase of the field at t = 0. The Schrödinger equations
of motion are thus

i~ȧ1 = ~ω1a1 + ~bei(ωt+φ)a2 (B.3)

i~ȧ2 = ~be−(iωt+φ)a1 + ~ω2a2 , (B.4)

which we differentiate again to obtain two independent equations of motion:

ä1 − i(ω − ω1 − ω2)ȧ1 + (b2 + ω1ω − ω1ω2)a1 = 0 (B.5)

ä2 + i(ω + ω1 + ω2)ȧ1 + (b2 − ω2ω − ω1ω2)a1 = 0 . (B.6)

We now define some auxiliary parameters to simplify notation: the resonance frequency is
ω0 = ω2 − ω1, the detuning from resonance is δ = ω0 − ω, the generalized Rabi frequency
is Ω̃ =

√
δ2 + 4b2, and we denote the sum of the two eigenfrequencies by ω′ = ω1 +ω2. In

terms of these quantities, the roots of the characteristic equations associated with B.5 and
B.6 are

λ
(1)
± =

i

2

[
(ω − ω′)± Ω̃

]
(B.7)

λ
(2)
± =

i

2

[
−(ω + ω′)± Ω̃

]
, (B.8)

so that the solutions take the form

a1(t) = ei(ω−ω
′)t/2

[
Aei

Ω̃t
2 +Be−i

Ω̃t
2

]
(B.9)

a2(t) = e−i(ω+ω′)t/2
[
Cei

Ω̃t
2 +De−i

Ω̃t
2

]
(B.10)
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The constants A,B,C,D are related to the initial values of a1 and a2; to determine their
explicit dependence, we suppose that a1(t1) and a2(t1) are known at some time t1. We can
write these initial values in terms of the above constants by letting t→ t1 in equations (B.9)
and (B.10) above. Two more constraints are required, and these come from the derivatives
ȧ1(t1) and ȧ2(t1). They can be determined by equating the derivatives of equations (B.9)
and (B.10) to the corresponding quantities in the equations of motion (B.3) and (B.4):

ȧ1(t1) = ei(ω−ω
′)t1/2

[
i

2

[
(ω − ω′) + Ω̃

]
Aei

Ω̃t1
2

+
i

2

[
(ω − ω′)− Ω̃

]
Be−i

Ω̃t1
2

]
= −iω1a1(t1)− ibei(ωt1+φ)a2(t1) , (B.11)

and

ȧ2(t1) = e−i(ω+ω′)t1/2

[
i

2

[
−(ω + ω′) + Ω̃

]
Cei

Ω̃t1
2

+
i

2

[
−(ω + ω′)− Ω̃

]
De−i

Ω̃t1
2

]
= −ibe−i(ωt1+φ)a1(t1)− iω2a2(t1) . (B.12)

Solving for A,B,C,D, we find

A = e−i(ω−ω
′)t1/2e−iΩ̃t1/2

[
Ω̃ + δ

2Ω̃
a1(t1)− ei(ωt1+φ) b

Ω̃
a2(t1)

]
(B.13)

B = e−i(ω−ω
′)t1/2eiΩ̃t1/2

[
Ω̃− δ

2Ω̃
a1(t1) + ei(ωt1+φ) b

Ω̃
a2(t1)

]
(B.14)

C = ei(ω−ω
′)t1/2e−iΩ̃t1/2

[
−e−i(ωt1+φ) b

Ω̃
a1(t1) +

Ω̃− δ
2Ω̃

a2(t1)

]
(B.15)

D = ei(ω−ω
′)t1/2eiΩ̃t1/2

[
e−i(ωt1+φ) b

Ω̃
a1(t1) +

Ω̃ + δ

2Ω̃
a2(t1)

]
, (B.16)

and so we obtain solutions for a1(t) and a2(t):
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a1(t) = e
i
2

(ω−ω′)(t−t1)

[(
i
δ

Ω̃
sin

Ω̃(t− t1)

2
+ cos

Ω̃(t− t1)

2

)
a1(t1)

−iei(ωt1+φ) 2b

Ω̃
sin

Ω̃(t− t1)

2
a2(t1)

]
(B.17)

a2(t) = e−
i
2

(ω+ω′)(t−t1)

[
−ie−i(ωt1+φ) 2b

Ω̃
sin

Ω̃(t− t1)

2
a1(t1)

+

(
−i δ

Ω̃
sin

Ω̃(t− t1)

2
+ cos

Ω̃(t− t1)

2

)
a2(t1)

]
. (B.18)

Ramsey notes that this solution is equally valid at times when there is no field present (i.e.,
when b=0) [122]. In this case, the equations reduce to

a1(t) = e−iω1(t−t1)a1(t1) (B.19)

a2(t) = e−iω2(t−t1)a2(t1) , (B.20)

which is the ordinary dynamical evolution in the absence of interactions. Neglecting some
subtleties associated with how rapidly the fields are turned on and off (which relate to
the validity of the RWA and the two-level approximation, see [55]), we can use equations
(B.17) to (B.20) to describe the system’s evolution before, after, and during pulses. We
need only know the system’s initial state (say at t=0 or t=−∞) to obtain the state at some
later time t= t1; the state at t= t1 being known, we can then obtain the state at t= t2>t1

in a similar fashion. For each step we simply carry out the evolution as prescribed by
our solutions, with the appropriate values of b, ω, and φ for the field that acts during that
interval. We also mention that the state of the system can be extrapolated backward in time
from an instant where it is known, simply by taking t<t1 in place of t>t1 above.

The prototypical experiment with two square pulses is illustrated in figure B.1. We sup-
pose that two pulses of equal duration τ are applied to the system, with a time T separating
the falling edge of the first pulse from the rising edge of the second. If the first pulse turns
on at t=0, when the amplitudes are known to be ai=δi1, then the amplitudes at t=2τ + T

are
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Figure B.1: Two pulse resonance experiment, where a constant-amplitude oscillating field
acts for a duration τ starting at t=0 and again at t=τ + T .

a1(2τ + T ) = e
i
2

(ω−ω′)(2τ+T )e
−i
2

(ω̄1−ω1+ω̄2−ω2)T e−i
∆φ
2

×
[(

cos Ω̃τ + i cos θ sin Ω̃τ
)

cos
λT + ∆φ

2

+
(
i cos Ω̃τ cos2 θ + i sin2 θ − sin Ω̃τ cos θ

)
sin

λT + ∆φ

2

]
(B.21)

a2(2τ + T ) = 2i sin θ sin
Ω̃τ

2
e
i
2

(ω+ω′)(2τ+T )e
−i
2

(ω̄1−ω1+ω̄2−ω2)T e
−i
2

(φ+φ′)

×

[
cos θ sin

Ω̃τ

2
sin

λT + ∆φ

2
− cos

Ω̃τ

2
cos

λT + ∆φ

2

]
, (B.22)

where we have followed Ramsey by defining sin θ = 2b/Ω̃, and cos θ = δ/Ω̃ (note that
sin2 θ + cos2 θ = 1). We have also allowed for the possibility that the eigenfrequencies
ω1, ω2 may drift during the interval between pulses, and defined ther average values over
that interval by ω̄1, ω̄2 respectively. The quantity λ≡ ω̄2− ω̄1−ω is the mean detuning over
the same interval, and we have allowed the second oscillating field to have a phase offset φ′

independent from the phase offset φ of first field. The relative phase between the two fields
(which are still assumed to have the same amplitude) is ∆φ ≡ φ− φ′.

B.2 Multiple Pulses

The solutions derived in the previous section for two-pulse interferometry have relatively
compact expressions, but for more pulses the time-evolution is more readily handled with
matrices. In matrix form, we can write equations (B.17) to (B.20) as
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(
a1(t)

a2(t)

)
=

(
αE1 βE1

−β∗E2 α∗E2

)(
a1(t1)

a2(t1)

)
(B.23)

in general, or (
a1(t)

a2(t)

)
=

(
ε1 0

0 ε2

)(
a1(t1)

a2(t1)

)
(B.24)

when b = 0. We have defined the auxiliary quantities

α = i
δ

Ω̃
sin

Ω̃(t− t1)

2
+ cos

Ω̃(t− t1)

2
(B.25)

β = −iei(ωt1+φ) 2b

Ω̃
sin

Ω̃(t− t1)

2
(B.26)

E1 = e
i
2

(ω−ω′)(t−t1) (B.27)

E2 = e−
i
2

(ω+ω′)(t−t1) (B.28)

ε1 = e−iω̄1(t−t1) (B.29)

ε2 = e−iω̄2(t−t1) , (B.30)

and we will for now allow the field to have different parameters each time it acts. Rewriting
equation B.23 as

a(t+ τ) = M(t, τ) · a(t) , (B.31)

and equation B.24 as
a(t+ T ) = m(T ) · a(t) , (B.32)

we obtain the state after an equal number of pulses and delays as

a

(
t+
∑
j

τj +
∑
j

Tj

)
=
∏
j

(Qj1 + Rj · σ) · a(t) , (B.33)

where 1 is the identity matrix, σ is the vector of Pauli matrices, and the matrices Qj and
Rj = Rj,xx̂ + Rj,yŷ + Rj,zẑ are implicitly defined functions of the auxiliary quantities
α, β, E1, E2, ε1, ε2.
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optique d’une inégalité de population des niveaux de quantification spatiale des
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