Physics 457 Problem Set 10

Due in Class, April 13, 2005

Note: The second take home exam will be due April 15, 2005. It will be handed out in class on Wednesday, April 13.

Reading: Frauenfelder and Henley Chapter 17, 10, 11

1. (Held over from last week). Estimate the average matrix element

$$[| < f | H_{int}^w | i > |^2]^{1/2}$$

for the electron capture reaction $^{40}K + e^- \rightarrow ^{40}Ar + \nu$ (Use two body phase space and the lifetime given in the Nuclear Wallet Card.)

2. (also from last week) What is the $ft_{1/2}$ value for the β decay of ²³⁹Np? (use the data handed out with Problem set to determine the Q-value).

3. Identify the decay interaction (strong, electromagnetic or weak) and justify you answer for each of the following:

a.)
$$\pi^+ \to \mu^+ \nu_\mu$$

b.)
$$\pi^0 \to \gamma \gamma$$

c.)
$$\Lambda^0(s = -1) \to p + \pi^-$$

d.)
$$\Delta^{++} \rightarrow p + \pi^+$$

4. Estimate the banching ratios for the following decays:

a.)
$$\frac{R(K_S^0 \to \pi^+ \pi^-)}{R(K_S^0 \to \pi^0 + \pi^0)} = ?$$

b.)
$$\frac{R(\Lambda \to p^+\pi^-)}{R(\Lambda \to n + \pi^0)} = ?$$

c.)
$$\frac{R(\Sigma^+ \to p^+ \pi^0)}{R(\Sigma^+ \to n + \pi^+)} = ?$$

Note: K_S^0 has $I=1/2, J^P=0^-; \Lambda$ has $I=0, J^P=\frac{1}{2}^-; \Sigma^+$ has $I=1, J^P=\frac{1}{2}^+$.