Physics 457 Problem Set 6

Due in Class, February 21, 2005

Note: This short P.S. is due Monday February 21. There will be no class Feb 23. On March 9, I will had out the take-home midterm. It will be due at 5 PM on March 11.

$$\begin{aligned} |\pi^{0}\rangle &= \frac{1}{\sqrt{2}}(|u\bar{u}\rangle - |d\bar{d}\rangle) \quad |\eta\rangle &= \frac{1}{\sqrt{6}}(|u\bar{u}\rangle + |d\bar{d}\rangle - 2|s\bar{s}\rangle) \\ |\eta'\rangle &= \frac{1}{\sqrt{3}}(|u\bar{u}\rangle + |d\bar{d}\rangle + |s\bar{s}\rangle) \end{aligned}$$

1. Show that the η and η' are indeed orthogonal.

2. Consider the bound states of Charmonium with n = 1 and n = 2. a.) List all of the possible states and their quantum numbers including J^{PC} and $n^{(2s+1)}l_j$. There are 2 n = 1 levels (singlet and triplet) and a total of five n = 2 levels.

b.) Identify the η_c (2980 MeV), J/ψ (3097 MeV), ψ (3685 MeV), χ_{c0} (3415 MeV), χ_{c0} (3510 MeV), and χ_{c0} (3556 MeV).

3 a.) Use the $\psi(2s)$ to $J\psi(1s)$ mass splitting to determine α_s .

Assume
$$V(r) = -\hbar c \frac{\alpha_s}{r}$$

Hint: The positronum energy levels, without hyperfine splitting, are given by

$$E_n = \frac{m_\mu c^2 \alpha_e^2}{2n^2}$$

where $\hbar c \alpha_e = k e^2$ and m_{μ} is the reduced mass $= m_e/2$ for positronium. b.) What is the effective Bohr radius for Charmonium?

4. The SU(3) baryons are made up of u, d, and s quarks. Thus there are 27 combinations of quark flavors. These 27 combinations are grouped according to their symmetry under exchange of any two quarks into a symmetric decuplet (10 baryons), two groups of eight, and an antisymmetric singlet.

a.) Write down the SU(3) combination that corresponds to the antisymmetric singlet.

b.) What are the quantum numbers I and s of this baryon?

c.) Since the color component of the baryon wave function is always ANTISYMMETRIC, the rest of the wave function must be SYMMETRIC (i.e. $\psi_{space} \times \psi_{spin} \times \psi_{isospin}$). Assume an l = 0, s-state and describe the symmetry under isospin and spin.