
Absolute Magnetometry with 3He:

Cross Calibration with Protons in

Water

by

Midhat Farooq

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Physics)

in the University of Michigan
2019

Doctoral Committee:

Professor Timothy Chupp, Chair
Professor Dante Amidei
Professor Dave Kawall, University of Massachusetts
Professor Sarah Keane
Professor Scott Swanson



Midhat Farooq

midhatf@umich.edu

ORCID iD: 0000-0002-7629-205X

c©Midhat Farooq 2019



Dedicated to all women of color in STEM -

those who worked hard to pave the way,

those who tirelessly persist today,

and the bright minds of the future.

ii



Acknowledgments

I would like to thank my advisor, Tim Chupp, for providing the guidance and mentorship I

needed to succeed and for his immense support of my extracurricular activities. I also want

to thank my fellow group members, Natasha Sachdeva and Alec Tewsley-Booth, for being

willing to help with experimental work and also for greatly contributing to my understanding

of physics. I am grateful to my Argonne colleagues, Joe Grange, Ran Hong and especially

Peter Winter, for welcoming me into their group and making it so easy to conduct research

away from my home institution. David Flay and Dave Kawall have also been of great help

throughout my time at Argonne, providing much needed guidance. I want to thank Jim

Tice, Ken Wood, and Frank Skrzecz for always being willing to machine parts, Tim Cundiff

and Gary Drake for teaching me all about electronics, and Matt Okunawo and Duane Lute

for 3D printing the many pieces I requested. I want to acknowledge the physics staff who

made the department feel like home, including Paul Thurmond, Joe Sheldon, Chris Bolang,

Kristyn Sonnenberg, Kayla Keller, Elise Bodei, Lauren Segall, Grace Johnson, Steve Roper,

Carol Rabuck, and especially Chrissy Zigulis, who gave me strength, confidence, and love.

Friends in the community that I cannot imagine going through graduate school without are

Aaron Ross, Angela Germaine, Cristina Schlesier, Ben Lawson, Anthony Charles, Alex and

Evangeline Burgers, Cameron Nelson, and Jess Cote. I want to especially thank Veronica

Policht and Natasha Sachdeva for being my family and the support I didn’t know I needed.

Everything I have achieved in life is a direct result of my mother’s endless, selfless love and I

want to thank both of my parents for always encouraging me to follow my passion. Lastly, I

want to thank my sister Iqra and my partner Joe for their undeterred love and support even

when I make it hard for them. Without you two in my life, any success would be meaningless.

Funding acknowledgment

This work was supported by NSF grants PHY-150602 and PHY-1812314 and the DOE

SCGSR program.

iii



Table of Contents

Dedication ii

Acknowledgments iii

List of Tables vi

List of Figures vii

List of Appendices xi

Abstract xii

Chapter 1: Introduction 1

Chapter 2: Background and Motivation 3

2.1 Muon g-2: Theory and Experiment . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 Magnetic Field Calibration and the 3He Cross Check . . . . . . . . . . . . . 8

Chapter 3: Theory: MEOP and NMR 13

3.1 Need for Hyperpolarization of 3He . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2 Metastability Exchange Optical Pumping . . . . . . . . . . . . . . . . . . . . 14

3.3 NMR: Nuclear Magnetic Resonance . . . . . . . . . . . . . . . . . . . . . . . 20

Chapter 4: Low Field MEOP and NMR Studies 26

4.1 3He Sample Cells: Making, Cleaning, and Filling . . . . . . . . . . . . . . . . 26

4.2 Low-field MEOP: Experimental Setup . . . . . . . . . . . . . . . . . . . . . . 28

4.3 Experimental Apparatus and Electronics for NMR . . . . . . . . . . . . . . . 36

4.4 Low Field NMR signal and studies . . . . . . . . . . . . . . . . . . . . . . . 41

iv



Chapter 5: High Field MEOP and NMR 46

5.1 Changes for High Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.2 NMR Studies with UW Electronics . . . . . . . . . . . . . . . . . . . . . . . 57

5.3 NMR Studies with Umich Electronics . . . . . . . . . . . . . . . . . . . . . . 64

5.4 Umich Electronics for Proton NMR . . . . . . . . . . . . . . . . . . . . . . . 74

Chapter 6: Absolute Measurement and Cross-calibration 75

6.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6.2 Corrections Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.3 BNL Corrections (Cylindrical Probe) . . . . . . . . . . . . . . . . . . . . . . 85

6.4 3He Corrections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6.5 Other Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.6 Cross-Check and Error Propagation . . . . . . . . . . . . . . . . . . . . . . . 101

6.7 Spherical Probe Cross Calibration . . . . . . . . . . . . . . . . . . . . . . . . 104

Chapter 7: Conclusion and Looking Forward 109

7.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

7.2 Suggestions for Future Improvements . . . . . . . . . . . . . . . . . . . . . . 110

7.3 Future Measurements Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

Appendices 114

Bibliography 125

v



List of Tables

2.1 Standard model contributions and uncertainties to aµ. . . . . . . . . . . . . . 4

2.2 List of experiments measuring aµ and precision reached. . . . . . . . . . . . . 6

5.1 Laser voltage settings for 3He absorption lines at 1.45 T. . . . . . . . . . . . 49

6.1 Cylindrical BNL probe cross-calibration with 3He probe: all corrections and

uncertainties. The final error of 36 ppb results from adding the uncertainties

in quadrature as described in Sec. 6.6 and is with respect to proton NMR

frequency 61.7 MHz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.2 Spherical BNL probe cross-calibration with 3He probe: all corrections and

uncertainties. The final error of 37 ppb results from adding the uncertainties

in quadrature as described in Sec. 6.6 and is with respect to proton NMR

frequency 61.7 MHz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

A.1 3He data from cylindrical probe ABA cross-calibration (continued on next

page). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

A.2 Cylindrical BNL probe data for ABA cross-calibration with 3He probe. . . . 119

A.3 3He data from spherical probe ABBA cross-calibration. . . . . . . . . . . . . 120

A.4 Spherical BNL probe data for ABBA cross-calibration with 3He probe. . . . 121

vi



List of Figures

3.1 The three steps of low field MEOP. Figures adapted from [1] . . . . . . . . . 16

3.2 Absorption lines of 3He from 23S to 23P . . . . . . . . . . . . . . . . . . . . 16

3.3 Low (a) and high (b) field absorption lines for 3He MEOP. The relative inten-

sities are only estimates and all lines are with respect to the low field C1 line

at 0 GHz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.1 3He cells before and after pull off from string. . . . . . . . . . . . . . . . . . 27

4.2 Spectrum of cell as measured by spectrometer before and after freeze out. . . 28

4.3 Electronics for striking 3He discharge. . . . . . . . . . . . . . . . . . . . . . . 29

4.4 Transformers made to strike 3He discharge. N=80 turns for grey or white

wire, N=2 turns for red wire. . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.5 Measured 3He absorption spectrum at low field with labels for each absorption

line from Figure 3.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.6 MEOP experimental setup diagram (a) and picture (b) showing: 3He cell and

discharge coils, optics for optical pumping, polarimeter, and Helmholtz coils. 32

4.7 LCR Calibration Curve produced with 632 nm HeNe laser. . . . . . . . . . . 34

4.8 CW NMR studies at low field. The error bars are due to voltage measurements

of polarization signal, uncertainty of cell pressure, and polarimeter calibration. 37

4.9 Electronics diagram for low field NMR. . . . . . . . . . . . . . . . . . . . . . 38

4.10 3He NMR FID signal at low field. . . . . . . . . . . . . . . . . . . . . . . . . 42

4.11 Longer T ∗2 = 300 ms measured after switching to twinax cable. . . . . . . . . 43

4.12 FID signals after varying polarization time: 5 seconds to 120 seconds. . . . . 44

4.13 3He NMR FID signal amplitude decay as a function of time between polariza-

tion with MEOP and NMR measurement giving a measure of the T1 relaxation

time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.14 3He NMR FID signal for different sample cells. . . . . . . . . . . . . . . . . . 45

4.15 3He NMR FID signal with and without a chair near the setup. . . . . . . . . 45

5.1 High field superconducting MRI magnet at Argonne National Lab. . . . . . . 47

vii



5.2 Wavelength tuning of Keopsys laser at different external voltages. . . . . . . 48

5.3 3D printed probe mount for high-field magnetometry. . . . . . . . . . . . . . 50

5.4 Locations of optics, saddle coil, and 3He cell in 3D printed probe mount. . . 51

5.5 Before and after removing aluminum box. . . . . . . . . . . . . . . . . . . . 52

5.6 Saddle Coil design and photo. . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.7 Circuit for tuning and impedance matching saddle coil. . . . . . . . . . . . . 55

5.8 UW NMR electronics diagram. . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.9 Averaged FID signal on oscilloscope measured with UW electronics. . . . . . 59

5.10 FID amplitude study for different laser absorption lines. . . . . . . . . . . . . 60

5.11 Pressure dependence study. Note that the vertical scales are different. . . . . 62

5.12 Electronics diagram for high field NMR including Umich Pulse Controller

(dashed box). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.13 Umich NMR Pulse Controller timing diagram. . . . . . . . . . . . . . . . . . 66

5.14 Induced voltage on a pick up coil due to field created by the saddle coil and

Umich NMR pulse controller as a function of input voltage. . . . . . . . . . . 67

5.15 High Field FID with (a) UW and (b) Umich electronics. Note that the data

in (b) were taken after the switch to a copper shield and replacement of the

magnetic cable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.16 Set of 200 frequency measurements to check clock stability. The error bars

are determined from the standard deviation of the measurements. . . . . . . 69

5.17 Frequency stability data for two different days. The error bars are determined

from 68% confidence interval of the extracted frequencies from the Matlab fit. 70

5.18 Frequency stability data for short and long timescales. The error bars are

determined from 68% confidence interval of the extracted frequencies from

the Matlab fit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.19 Pressure dependent study of FID signal with Umich pulse controller. Note

that these studies were performed with the same electronic gain settings and

the two plots have different x- and y-scales. The digital noise in (a) is due to

the ∼1 mV resolution of the data acquisition system. . . . . . . . . . . . . . 71

5.20 Amplitude decay study for 2 and 10 Torr cells. The error bars are determined

from 68% confidence interval of the amplitude value from the Matlab fit.

Note that the decay does not follow the model due to additional time waited

between each set of 5 measurements, i.e. the T1 decay is on a longer time

scale than decay due to each pulse. . . . . . . . . . . . . . . . . . . . . . . . 72

viii



5.21 Amplitude decay of FID signal, corrected for NMR pulse angle 8◦, as a func-

tion of time. Extracted T1 = 134 min. The error bars are determined from

68% confidence interval of the amplitude value from the Matlab fit. . . . . . 73

6.1 The 3D printed holder (ivory) is mounted onto the 1D stage. Both the 3He

and BNL probes are fixed inside the holder with screws (circled). The x, y,

and z directions are also indicated, with the magnetic field along the z-axis. . 76

6.2 Scans of 3He probe along z-axis with the z-gradient set to three current values.

The point of intersection is where ∆B = 0, indicating that the probe active

volume is uniquely positioned in the magnet. . . . . . . . . . . . . . . . . . . 80

6.3 Position repeatability along z-axis . . . . . . . . . . . . . . . . . . . . . . . . 80

6.4 Caption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6.5 BNL probe measurements before and after linear drift correction. The blue

x’s mark the 3He measurement times. The error bars of 0.2 Hz (not shown

in (b)) are from the fit model dependence of the frequencies, as described in

section 6.5.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.6 UW NMR probe mounted on 3D stage and inserted into cross-calibration

setup with active volume in BNL nominal position. . . . . . . . . . . . . . . 88

6.7 Perturbation due to materials shown as a function of y-position. 0 mm marks

the position of the BNL probe active volume and gives the δother−mat correc-

tion. The error bars are due to frequency changes resulting from position

uncertainty. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.8 Magnetization dependent study (a) and corrections (b) . . . . . . . . . . . . 92

6.9 Shorter T ∗2 measured with stem parallel to field than when it is perpendicular. 94

6.10 P2(cosθ) fit of stem rotation about field in (a) x-z and (b) y-z planes. Note

that the frequency offset in (a) between the two x-positions is due to magnet

drift and accommodated for by the error bars. The error bars in both (a) and

(b) are due to the frequency spread from the uncertainty in positioning the

angle of the stem. The y-scales are different for the two figures. . . . . . . . 95

6.11 Frequency spread when cell rotated with stem held fixed.The error bars in

both (a) and (b) are due to the frequency spread from the uncertainty in

positioning the angle of the stem. Note the y-scales are different for the two

figures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.12 Apparatus for measuring 3He materials perturbations. . . . . . . . . . . . . . 98

7.1 Cross-calibration corrections schematics. . . . . . . . . . . . . . . . . . . . . 111

ix



A.1 High field FID data (plotted in blue), fit (red), and residuals (green). . . . . 115

A.2 BNL data fit using two methods. Note that there is 60 Hz noise which causes

the shape of the residuals. The fit amplitude does not change. . . . . . . . . 115

x



List of Appendices

Appendix A: NMR Fitting and Tabulated Cross-Calibration Data 114

Appendix B: Calculations 122

B.1 Magnetization Dependence of 3He Frequencies . . . . . . . . . . . . . . . . . 122

B.2 Magnetic Field Inside a Spherical Shell . . . . . . . . . . . . . . . . . . . . . 123

xi



Abstract

The muon magnetic moment anomaly aµ is a measure of how the g-factor of the muon

differs from the Dirac equation value of 2. Contributions to aµ from the Standard Model

(SM) arise from QED, strong, and electroweak interactions. The current 3.3 σ discrepancy

(∼2.5 ppm) between the measured value of aµ and the SM prediction could be a strong

signal of BSM (beyond Standard Model) physics. This experimental value was measured at

Brookhaven National Lab (BNL) with an uncertainty of 0.54 ppm. The measurement relied

on absolute calibration of the magnetic field, which was measured with a system of proton

NMR probes through a calibration chain referenced to an absolute probe with pure water.

The uncertainty of the absolute calibration was quoted as 50 ppb due mainly to temperature

dependent effects, perturbations due to materials, and the diagmagnetic shielding factor.

In this dissertation work, we cross-calibrate both BNL absolute calibration probes with an

independent magnetometer based on hyperpolarized 3He gas and perform pulsed NMR on

the samples for frequency extraction, which is proportional to the magnetic field. Studies in

both low fields (∼0.003 Tesla) and high fields (1.45 Tesla) are reported. The cross-calibration

campaign and corrections made to measure the field to the water and 3He standards are

described. The results of the cross-calibrations are 0.92 ± 2.23 Hz for the cylindrical BNL

probe and 1.24 ± 2.29 Hz for the spherical probe with ∼37 ppb uncertainty for each. The

∼2.3 Hz error for both is dominated by uncertainties from systematic corrections and 37

ppb is with respect to proton NMR frequency in 1.45 T.

xii



Chapter 1

Introduction

The goal of high energy physics is to explain the fundamental processes that underlie the

macroscopic phenomena that we observe all around us every day. The Standard Model of

particle physics is the most rigorous as well as experimentally validated theory that has been

successful at nearly achieving this goal. However, the Standard Model remains incomplete.

General Relativity, the widely accepted theory of gravity, is inconsistent with the Standard

Model. The model also does not account for 95% of the universe which is made of dark

matter and dark energy, two phenomena scientists are still attempting to understand. And

lastly, the Standard Model does not have a mechanism for explaining the matter-antimatter

asymmetry, i.e. why the universe mostly consists of matter.

As the theory lacks the information needed to extend the model, any new discoveries

must come from experiments. One example of a fundamental parameter of nature which

probes beyond Standard Model physics is a property of particles known as the magnetic

moment anomaly, which arises from quantum interactions not predicted by classical physics.

Historically, the anomaly value was predicted to be 0. However, in 1933, the proton anomaly

was experimentally measured to be nonzero, and the Standard Model later explained why.

Another particle of interest exhibiting this nonzero anomaly is the muon, which is much

like the electron but about 200 times heavier. Currently, both the experimental side and the
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theory have found the muon magnetic moment anomaly value to very high precision, but

the values disagree at a plausible level (< 5σ). Due to the possibility of exciting new physics

being the cause of this discrepancy, efforts to achieve better precision remain active on both

sides so a better comparison can be made. An alternative to repeating the expeirment which

increases confidence in the measurement is to check the experimental uncertainties. One

such cross-check is the subject of this dissertation.

The most recent experimental value was measured at Brookhaven National Lab, which

involved measuring two quantities very precisely to determine the anomaly. One of these

quantities was the strength of the magnetic field experienced by the muons used in the

experiment, which was measured to 170 parts per billion. A contributing factor to this

uncertainty came from a water-based system which measured the magnetic field to 50 parts

per billion. In the following dissertation, we verify this error by cross-checking the water-

based devices employed in the BNL experiment with an independent device based on Helium-

3 gas to 36 parts per billion.

We begin Chapter 2 with background information on the history of the Standard Model

value of the anomaly as well as the experiments which measured it with increasing precision.

We also provide motivation for using Helium-3 gas to perform the cross-check. Chapter 3

gives an overview of two techniques employed in the dissertation work to use Helium-3 gas as

a magnetometer, i.e. a device which measures magnetic fields. The first technique is called

MEOP, which was discovered in 1963 and is now widely used to hyperpolarize Helium-3 gas.

The second technique, NMR, is employed broadly across the fields of physics, chemistry,

and biology to measure magnetic fields. In chapters 4 and 5, we discuss the functionality

of the Helium-3 magnetometer at low magnetic fields (Chapter 4) and high magnetic fields

(Chapter 5). Finally, in Chapter 6, we provide the details of the cross-calibration of the

BNL water-based magnetometers with the Helium-3 magnetometer. Lastly, we list results

and conclude the dissertation with possible improvements for future endeavors with the

Helium-3 magnetometer.
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Chapter 2

Background and Motivation

2.1 Muon g-2: Theory and Experiment

2.1.1 Theory

The magnetic moment µ of a particle is proportional to its intrinsic spin ~S. Specifically, for

charged leptons (electrons, muons, and taus) of spin 1/2, the magnetic moment is given by:

µl =
gl
2

e~
2ml

, (2.1)

where e is the electronic charge, ~ is Planck’s constant, ml is the mass of the respective lepton,

and the factor gl is more commonly written in terms of the magnetic moment anomaly al:

gl = 2(1 + al) (2.2)

From Dirac’s theory, gl = 2 for any spin-1/2 particle with charge±e, so the magnetic moment

anomaly is expected to be al = (gl − 2)/2 = 0. However the value was historically found

to be nonzero first experimentally, and then theoretically. The theoretical standard model

(SM) of particle physics predicts several radiative corrections to al due to the coupling of
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the muon to virtual fields:

al = aQED + aWeak + aHad (2.3)

These corrections are detailed in [2].

The first term in equation 2.3, known as the Schwinger term, comes from the lowest

order (LO) Quantum Electrodynamics (QED) process arising from interaction with a virtual

photon. This is the largest correction and has been calculated to five loops giving aµ ≈ 1.16

x 10−3 [3] [4]. The electroweak correction is due to diagrams with heavy bosons, such as

W± and the Z boson, and has been calculated to two loops [5], [6], [7–10]. The most recent

calculation also includes interactions with the Higgs boson [11]. The remaining contributions

to aµ are all hadronic, calculated from Quantum Chromodynamics (QCD). These are the

LO and HO (highest order) vacuum polarization (VP) contributions and a higher order

light-by-light correction [12, 13], [14], [15]. Of these, the LO VP term dominates the QCD

contribution to aµ and two separate calculations exist. All the standard model corrections

are summarized in table 2.1 from [2].

Any corrections Beyond the Standard Model (BSM) would be proportional to m2
l , making

aµ more sensitive to new physics than ae by a factor of m2
µ/m

2
e ≈ 4.3 x 104. While the

electron magnetic moment anomaly is known extremely well to 0.6 parts per billion (ppb)

[17], the most recent muon magnetic moment anomaly was measured to 0.54 ppm and

differs from the SM value by 3.3 σ [18]. Both the potential for aµ to reveal new physics

Source Contribution (10−11) Uncertainty Refs

QED - 5 loop 116 584 718.951 0.007, 0.077 [3, 4]
Electroweak 154 1 [5–11,16]

Hadronic VP (LO) 6923 42 [12,13]
Hadronic VP (LO) 6949 43 [14]
Hadronic VP (HO) -98.4 0.7 [14]

Hadronic LBL 105 26 [15]

Total SM 116 591 802 49
Total SM 116 591 828 50

Table 2.1: Standard model contributions and uncertainties to aµ.
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and the discrepancy with the standard model are highly compelling for further calculations

and experimental measurements. This also motivates efforts of increased scrutiny in any

systematic uncertainties of the measured values, such as this dissertation work.

2.1.2 History of Experiments

The first few measurements of aµ were conducted before 1960 and are described in [19].

Following these, a series of three experiments took place at CERN. The details are given

in [18] and [19], and we provide a brief summary here. The first CERN experiment used a 6

meter long magnet with a known field gradient across the muon beam path. A polarized beam

of muons was created using pion decay and a detector at the end of the beam path measured

the polarization of the muons exiting the magnet. Since aµ is nonzero, the muon’s spin

and momentum precess at different rates in the presence of a magnetic field. Measuring the

polarization difference between the muons entering and exiting the magnet hence measured

the change in precession. The result aµ was reported to 4300 ppm (parts per million) [20],

[21]. The second CERN experiment [22] employed a magnetic ring in which an injected

proton beam hit a target to produce pions which decayed into muons. A magnetic field

gradient provided vertical focusing of the muon beam. The detection of the positrons decayed

from the muons yielded the muon precession frequency giving aµ to 270 ppm.

The final CERN experiment made many improvements over the previous two. It em-

ployed a magnetic storage ring for the muons similar to the second experiment, but the in-

jection and focusing were different. Instead of proton beam injection, the target was placed

outside the ring and the pion beam was injected into the magnet, which reduced much of

the background and provided increased muon storage. The experiment also used electric

quadrupoles for the vertical focusing of the muon beam eliminating magnetic gradients and

hence improving the uniformity of the field. This experiment was conducted for both µ+

and µ− and measured aµ to 10 ppm for each polarity [23].

The most recent measurement of aµ was conducted at Brookhaven National Lab (BNL) by
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Experiment Years Precision (ppm) Ref.

CERNI 1961 4300 [20], [21]
CERNII 1962-1968 270 [22]
CERNIII 1974-1976 10 [23]

BNL 1997-2001 0.54 [18]
Fermilab Ongoing 0.140 [24]

Table 2.2: List of experiments measuring aµ and precision reached.

the E821 experimental collaboration and used the same general approach as CERN-III [18].

The improvements made included:

• a superconducting magnetic storage ring with higher field uniformity,

• an ”inflector” magnet capable of directly injecting muons in bunches every 33 ms,

which reduced background and increased storage further,

• a ”kicker” magnet to stabilize muon orbit and position,

• electrostatic quadrupoles with twice the strength of those used in CERN-III, and

• a circular storage volume (annular ring) as opposed to the square shape in CERN-III

which reduced error in determining the magnetic field experienced by muons.

After a total of four runs with µ+ and a fifth run with µ−, BNL E821 reported a measurement

of aµ to 0.54 ppm [18]. We summarize the CERN and BNL results in table 2.2 just as was

done in the BNL final result paper.

Currently, there is an ongoing effort at Fermi National Accelerator Laboratory by the

E989 collaboration to improve the BNL measurement by a factor of 4 and measure aµ to

140 ppb [24]. The BNL storage ring was transported to Fermilab for this effort in 2013 and

the results from the first run will be unblinded this summer (2019). While this dissertation

work was performed using a test magnet employed for E989, since we only report the cross-

calibration of BNL magnetic field probes, a detailed description of the E989 experiment is

outside the scope of this work. We instead give an overview of the BNL experiment (E821)

in the next section.
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2.1.3 BNL Experiment Method

Muons injected into a magnetic storage ring have a cyclotron frequency ~ωC = −q ~B/mγ,

where q and m are the charge and mass of the muon, respectively, ~B is the magnetic field,

and γ is the Lorentz factor related to the velocity of the muon. Additionally, the muon spin

precesses in the magnetic field with the frequency:

~ωS =
−gq ~B

2m
− (1− γ)

q ~B

γm
(2.4)

Taking the difference of the two quantities gives:

~ωa = ~ωC − ~ωS = −
(g − 2

2

)q ~B
m

= −aµ
q ~B

m
, (2.5)

where ~ωa is known as the anomalous precession frequency as it is directly related to aµ.

Due to the presence of the electric field ~E from the electrostatic quadrupoles that provide

focusing of the beam, there is an additional term introduced:

~ωa = − q

m

[
aµ ~B −

(
aµ −

1

γ2 − 1

) ~βx ~E

c

]
(2.6)

However, at the specific γ value of 29.3, the ~βx ~E term drops out and the equation for aµ

reduces to 2.5. By preparing muons with this γ at what is known as the magic momentum

3.094 GeV/c, the experimenters can ensure that the quadrupole field ~E only causes the

intended focusing effect. Then, as can be seen from equation 2.5, the muon magnetic moment

anomaly aµ can be determined by measuring the muon precession frequency ~ωa and the

magnetic field ~B of the storage volume.

The BNL experiment directly measured ωa by detection of emitted positrons e+ from

the µ+ decay. Due to parity violation in the weak interaction, the decay positron emission

is preferentially in the direction of the muon spin, i.e. when the angle between the positron

trajectory and the muon spin is 0◦ or 180◦. More specificially, the energy of the positrons
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is directly proportional to the cosine of this angle. Hence, by measuring this angular distri-

bution of the emitted positrons over time, the precession of the muons ωa can be measured.

Detectors known as calorimeters were placed just outside the inner radius of the storage ring

to measure the precession frequency for the BNL E821 experiment.

The magnetic field measurement used several Nuclear Magnetic Resonance (NMR) probes

inside and outside the ring (see Chapter 3.3 for an overview of NMR). These probes were

in general very precise, but their measured value included perturbations, such as shifts from

susceptibilities of materials needed for probe construction. Due to this, an absolute reference

was needed. The probes were calibrated absolutely to the precession frequency ωp of free

protons in the magnetic field. This frequency was then convoluted with the distribution

volume of the muons to yield a new quantity ω̃p which gave the field seen by the muons. The

calibration chain which resulted in the ωp measurement is described in the next section.

2.2 Magnetic Field Calibration and the 3He Cross Check

2.2.1 Calibration Chain

As probes could not be placed in the storage region while muons were present, 378 NMR

probes were instead mounted above and below the storage volume around the ring. Since

these probes were not moved during data taking, they were referred to as fixed probes. At the

beginning of the experiment, the fixed probes contained cylindrical water samples on which

NMR was performed to constantly monitor the magnetic field when data was being taken.

However, in between different runs of the experiment, the water samples were replaced with

petroleum jelly for some of the fixed probes as petroleum produces similar signals to water

and the measurements do not depend as highly on temperature. Petroleum also does not

evaporate, which was part of the issue with the water samples. Lastly, the NMR relaxation

times of petroleum are shorter than water (about 10 ms vs. 100s of ms), which yields a

higher rate of measurement.
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A group of 17 probes (idential in design to the fixed probes), were mounted in a trolley

that could be pulled around the ring inside the storage volume. The probes were arranged in

concentric circles covering up to 7 cm of the 9 cm total diameter of the storage region cross-

section. The trolley scanned the ring every few days at random times, taking magnetic field

measurements at about 6000 points around the ring [19]. During data collection with muons

in the storage ring, the trolley was parked in an area adjacent to the storage volume out of

the beam path. The trolley measurements (conducted when no data was being taken) and

fixed probe measurements (conducted during both data-taking and non-data taking periods)

were interpolated to generate a field map of the storage region experienced by the muons.

This is how the trolley calibration was transferred to the fixed probes.

Next, the trolley probes were calibrated using a plunging probe which was finally cali-

brated with an absolute probe, which corrects the measured field value by a water sample

to that of a free proton, hence the term ’absolute.’ A plunging station was constructed

near the storage region with a more homogenous field for the purpose of calibration. An

absolute probe with a spherical water sample was used to cross-calibrate the plunging probe

in the plunging station. The plunging probe could then be placed in the same positions as

the trolley probes in vacuum and was used to transfer the absolute probe calibration to the

trolley probes. Since the last link of the calibration chain was the absolute probe, all the

probes were calibrated to the free proton field measurement.

Additionally, another absolute probe with a cylindrical water sample was used for a

cross-check. The subject of this dissertation was to employ a probe with a sample different

from water-based NMR, 3He gas, to cross-calibrate both of the BNL absolute probes, the

cylindrical probe and the spherical probe.

2.2.2 The 3He Cross-Check

The absolute probes used in the BNL experiment measured the proton NMR frequency to

50 ppb [18]. While higher precision was not necessarily desired, it was essential to cross-
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calibrate the probes against an independent probe since the absolute calibration error in

the experiment could have contributed to the discrepancy between the BNL result and the

predicted SM value. We employed a Helium-3 gas based magnetometer to cross-calibrate

both BNL absolute probes, which offers several advantages over water:

• hyperpolarized gas could produce higher signal-to-noise,

• the low susceptibility of the gas at low pressure leads to small shape dependent cor-

rections,

• the diamagnetic shielding factor has a small uncertainty (0.1 ppb),

• the diamagnetic shielding factor has a small temperature dependence.

Additionally, multiple 3He samples can be employed with different systematic corrections.

For example, since the NMR signal from 3He is dependent on the pressure of the gas and the

polarization in the sample, different samples with varying gas pressures and polarizations

could be used. These physical quantities could behave as knobs that control the systematic

uncertainties of each probe. Correcting multiple probes with different systematic errors

would increase the level of confidence in the measurement.

2.2.3 Calibration Overview

From equation 2.5, the precession frequency can be written in terms of the magnetic moment

anomaly:

ωa =
e

mµ

Baµ (2.7)

The quantity measured in the experiment is not B, but the proton frequency ωp (or the 3He

frequency ω3) which yields the magnetic field value: ωs = 2(µs/~)B, where the subscript s

denotes the standard used for calibration (protons or 3He nuclei). Solving this equation for

B and plugging the result into 2.7, we can write the anomaly in terms of known constants
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and the two measured values ωa and ωs:

aµ = 2
mµµs
e~

ωa
ωs

(2.8)

Since the ratio of the muon mass to the electron mass is known to 22 ppb [25], µµ/µe has a

lower uncertainty than the muon mass by itself (25 ppb). Substituting e~ = 4µeme/ge from

equation 2.1, we find:

aµ =
ge
2

ωa
ωs

µs
µe

mµ

me

(2.9)

where ge is the electron g-factor related to the electron magnetic moment anomaly, and µe

is the electron magnetic moment. Since e and ~ have been measured to 6.1 and 12 ppb,

respectively, the new equation greatly reduces the uncertainty on aµ (ge ∼ 1 ppt, µp ∼ 7

ppb, µ3 ∼ 13 ppb, µe ∼ 6.2 ppb, mµ/me ∼ 22 ppb, [25]). The equation thus gives the muon

magnetic moment anomaly in terms of constants measured to high precision and the two

measured quantities in the experiment ωa and ωs (= ωp or ω3).

Here ωs is the precession frequency of a free proton or 3He nucleus (helion) in a magnetic

field. Since the absolute probes first measure the frequency of the shielded protons in water

or the shielded helion nuclei in the helium-3 atom, the measurement must be corrected to

the unshielded value using the diamagnetic shielding factor for each (σp, σ3). However, we

can eliminate this step by not correcting to the free proton or free helion frequency, and

instead express aµ in terms of the shielded frequency measurement:

aµ =
ge
2

ωa
ω′s

µ′s
µe

mµ

me

(2.10)

This is highly beneficial because while both µ′p and µ′3 are known to 13 ppb, their ratio µ′3/µ
′
p

has been measured to 4.3 ppb. Since we are only interested in comparing the measurements

between the 3He and water probes for the cross-check, we can cross-calibrate to much higher

precision by using the ratio of the shielded values.
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2.2.4 Review of 3He γ measurements

We provide a brief overview of the history of measured magnetic moments (directly related

to the gyromagnetic ratio γ) of 3He. In 1969, Williams and Hughes [26] measured the ratio

of the shielded 3He magnetic moment to protons in shielded hydrogen gas: -µ′3/µ
′
p(H2) =

0.76178685 ± 1 ppm. They also reported the ratio corrected for the shielding factors as: -

µ3/µp = 0.76181237 ± 0.6 ppm. In 1993, Flowers et al. [27] measured the ratio of the shielded

3He magnetic moment to the shielded protons in water: -µ′3/µ
′
p(H2O) =0.7617861313(33)

(uncertainty 4.3 ppb). Most recently, in 2012, Neronov et al [28] provided a measurement of

the shielded 3He magnetic moment with respect to shielding of protons in hydrogen (H2),

similar to the Williams and Hughes measurements: -µ′3/µ
′
p(H2) = 0.761786594(2). Correct-

ing for the shielding factors, they provide the unshielded ratio: -µ3/µp = 0.761812217(3).

While the uncertainty of this last measurement, 3.9 ppb, is lower than that of the Flowers

result, 4.3 ppb, we use the latter result for the cross-calibrations performed in this dissertation

work. This result gives us the added benefit of eliminating the step of correcting our 3He

and water probe frequency measurements by the shielding factors, which would introduce

further errors. Hence the only error present in our cross-calibration due to the different

probe samples is 4.3 ppb.
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Chapter 3

Theory: MEOP and NMR

This chapter covers the theory behind the 3He magnetometer operation. We start with

motivation for why 3He gas must be hyperpolarized to be used as a magnetometer. We then

describe the principles of Metastability Exchange Optical Pumping (MEOP) which is used

to hyperpolarize the gas. Finally, we give an overview of Nuclear Magnetic Resonance, which

is the technique used to extract a magnetic field value from the polarized 3He sample.

3.1 Need for Hyperpolarization of 3He

All current precision magnetometers utilize NMR (Nuclear Magnetic Resonance), which is

performed on magnetized samples. The magnetization is proportaional to the density ρ,

spin polarization P , and the magnetic moment µ of the sample: M = ρPµ. For a sample

with given density and magnetic moment, higher polarization yields a larger NMR signal.

Therefore any sample used with NMR must have a large polarization.

In the presence of a magnetic field B, spin-1/2 particles align either with or against the

field. If we define B along the z-axis, the polarization in a sample is given by:

Pz =
N↑ −N↓
N↑ +N↓

, (3.1)
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where N↑ are the number of nuclei aligned with the field (in the m = +1/2 magnetic sublevel)

with energy E↑ = −µB and N↓ is the number of nuclei against the field (in the m = −1/2

sublevel) with energy E↓ = µB, with the total number of nuclei N = N↑ + N↓. According

to the Boltzmann distribution at temperature T , the fraction of population in each state is:

N↑
N

=
e

+µB
kBT

e
−µB
kBT + e

µB
kBT

and
N↓
N

=
e
−µB
kBT

e
−µB
kBT + e

µB
kBT

,

where kB is Boltzmann’s constant. The polarization is then given by

Pz =
Ne

µB
kBT −Ne

−µB
kBT

Ne
µB
kBT +Ne

−µB
kBT

=
e

2µB
kBT − 1

e
2µB
kB + 1

≈ µB

kBT
≈ γ~B

2kBT
(3.2)

where γ is the gyromagnetic ratio of the sample and ~ is Planck’s constant. At room

temperature and for the same field B, 3He has a lower polarization, P , than water by a

small factor of 1.3 given by the ratio of γwater to γ3. However, conventional water samples

are low pressure with a density 6 orders of magnitude greater than typical 3He gas samples

used at low pressure (e.g. 2 Torr). Hence the magnetization, M = ρPµ, of water samples

with P given by the Boltzmann distribution is large enough for NMR. However, low pressure

3He, due to the much smaller density, must be hyperpolarized first to achieve a high enough

magnetization for NMR.

3.2 Metastability Exchange Optical Pumping

Hyperpolarization of spin-1/2 gases can be achieved using two techniques: Spin-Exchange

Optical Pumping (SEOP) or Metastability Exchange Optical Pumping (MEOP). SEOP

[29], [30] is generally performed on high pressure gas with an alkali metal. The metal is first

polarized with optical pumping and the polarization gets transferred to the ground state of

the gas via spin-exchange collisions. Polarization times with SEOP are long (hours) and the

level of polarization achieved is usually low. MEOP is more applicable for low pressure gas,
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such as the samples used in this work (2-40 Torr 3He). Using MEOP is also more beneficial

because the polarization times are much shorter (minutes) and the resulting polarization

is higher than with SEOP. Another advantage of MEOP over SEOP is that pure 3He gas

samples can be used without chemical shifts that would be introduced by the alkali metals

needed for SEOP.

3.2.1 MEOP at Low Field

The detailed theory of MEOP is outlined in references [31], [32], [33], and [34]. We give a

brief overview here.

The ground state of 3He has total electronic angular momentum J = L+S = 0 and since

the nuclear spin is I = 1/2, the total angular momentum F = J + I = 1/2. In a magnetic

field, this ground state has two sublevels mF = +1/2,−1/2. The goal of MEOP is to induce

a nuclear polarization in the gas so that the population of one sublevel is considerably higher

than the other. The transition from the ground state 11S0 to the first excited state 23S1 of

3He is optically forbidden due to selection rules (∆l = 0), and the energy difference is also

inaccessible with lasers (19.8 eV). Hence the ground state atoms cannot be optically pumped

into any excited states. Instead, the first step of MEOP is to strike a high radio frequency

discharge in the gas sample, through which the ground state atoms are excited to higher

levels and then radiatively decay to 23S1 as shown in Figure 3.1a. These atoms cannot

spontaneously decay to the ground state due to the optically forbidden transition, so the

first excited state, 23S1, is a metastable state.

This state has nonzero total electronic angular momentum, which combined with the

I = 1/2 nuclear spin yields two hyperfine sublevels F = 1/2 and F = 3/2 with six magnetic

sublevels. Similarly, the next excited state 23P has five hyperfine sublevels 23P0 (F=1/2),

23P1 (F=1/2, 3/2), 23P2 (F=3/2, 5/2), with 18 magnetic sublevels. The energy difference

between these states at low and high field are calculated in detail by Courtade, et al [35]. We

have adapted one figure (Figure 3.2) from the paper for the purposes of this work showing
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(a) MEOP Step 1 (b) MEOP Step 2

(c) MEOP Step 3

Figure 3.1: The three steps of low field MEOP. Figures adapted from [1]

Figure 3.2: Absorption lines of 3He from 23S to 23P
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all the 23S and 23P transitions. After the discharge initializes the atoms to the first excited

state in the first step of MEOP, the second step is to use 1083 nm light to optically pump

from the 23S1 state to 23P via the C8 or C9 transitions shown in Figure 3.2.

In the presence of a magnetic field, a circularly polarized incident beam, for example

σ+ on C8, will optically pump the 23S1 atoms with F=1/2, mF = −1/2 into the sublevel

of 23P0 with F=1/2, mF = 1/2, which then decay to any of the six sublevels of 23S1, as

seen in Figure 3.1b. As the optical pumping beam constantly depopulates the mF = −1/2

sublevels, there is a larger polarization of atoms in the F=1/2, mF = 1/2 sublevel than the

mF = −1/2 sublevel. This induces a nuclear polarization in the first excited state, which

concludes the second step of MEOP.

The third and final step of MEOP occurs when the polarized 3He atoms (3He↑) transfer

their nuclear polarization to the ground state atoms via metastability collisions:

3He↑(2
3S1) +3 He(11S0)→3 He(23S1) +3 He↑(1

1S0), (3.3)

where the arrows indicate the nuclear polarization transferred from excited-state to ground-

state atoms (Figure 3.1c). This final step creates an overall nuclear polarization in the

ground state, hyperpolarizing the gas.

When these polarized ground state atoms are again excited by the rf discharge, the 668

nm emitted light in the radiative decay (31D2 to 21P1) that follows is circularly polarized

[36], [37]. The degree of circular polarization of this emission is directly proportional to

the degree of nuclear polarization of the gas, with the proportionality constant given by a

pressure dependent factor from [38]. Hence measuring the degree of circular polarization of

668 nm light gives the nuclear polarization of the gas in the low field regime of a few Gauss.
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3.2.2 MEOP at High Field

The previous section applies to low field (few Gauss) MEOP. For the high field regime (>0.1

Tesla), the effects of the field on MEOP are studied and theoretical calculations are detailed

in [35], while results from experiments at 1.5 T are given in [39]. The main change that

occurs at high field is the change in energy sublevel separations. As the Zeeman splitting

increases with the field, the energy levels of 3He are modified. Specifically at 1.5 T, the

Zeeman splittings are larger than the hyperfine, which leads to a few different effects.

The first is that the absorption spectrum of the gas changes with the different sublevel

splittings, which spread over 150 GHz at 1.5 T as compared to 40 GHz at low field [1],

[39], [40]. The optical pumping beam for MEOP must therefore be tuned to resonance on

the new transition lines, known as f 2+/− and f 4+/−, where the + and − indicate right and

left circular polarization of light, respectively. Figures 3.3a and 3.3b adapted from [1] show

the low field and high field absorption lines including f 2+/− and f 4+/−. Since the Zeeman

splittings are larger than the hyperfine, the optical pumping beam does not have to have as

pure a circular polarization as in the case for low field.

Another effect due to the energy level changes is that the electronic and nuclear polar-

izations are coupled weakly (hyperfine coupling is weak), which makes it harder to achieve

nuclear polarization in the gas with MEOP potentially requiring longer polarization build

up times. However, this can be compensated for with a higher power optical pumping beam.

On the other hand, due to the same weak hyperfine coupling, less polarization is lost in the

light from the discharge (the same 668 nm light used to measure nuclear polarization at

low field) so the net nuclear polarization of the gas, once achieved, is more easily retained.

This also implies that the polarization of emitted light can no longer be used to measure the

nuclear polarization.

In summary, to use MEOP at high field, a high power laser tunable over a broader change

of energies (∼200GHz), including resonances on f 2+/− and f 4+/−, is needed. Abboud et

al [39] measure polarizations up to 80% in samples of 1-60 Torr in a 1.5 T field. While we do
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(a) Low field (few Gauss) absorption lines of 3He adapted from [1].

(b) High field (1.5 T) absorption lines of 3He adapted from [1].

Figure 3.3: Low (a) and high (b) field absorption lines for 3He MEOP. The relative intensities
are only estimates and all lines are with respect to the low field C1 line at 0 GHz.
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not measure the degree of nuclear polarization in our samples at high field, we do successfully

hyperpolarize our cells via MEOP and use them with NMR (Chapter 5).

3.3 NMR: Nuclear Magnetic Resonance

We describe the main principles of Nuclear Magnetic Resonance based on the theory detailed

by Abragam [41] and Slichter [42] using a semiclassical picture. While NMR is conventionally

performed on samples with magnetization M = ρPµ, we describe the formalism for one

magnetic moment µ, which can be generalized to a sample with many nuclei.

For a nucleus with angular momentum ~I and magnetic moment ~µ,

~µ = γ~I, (3.4)

where γ is the gyromagnetic ratio. In a magnetic field ~B, the magnetic moment experiences

a torque ~µ x ~B which from Newton’s second law is equal to the rate of change of the angular

momentum:

~τ = ~µ x ~B =
d~I

dt
(3.5)

Plugging equation 3.4 into this, we find the equation of motion for ~µ:

~µ x γ ~B =
d~µ

dt
(3.6)

At this point, the NMR formalism utilizes the technique of switching to a rotating frame.

Following [41], we label the lab frame S and define a new frame S ′ which rotates at an

angular velocity ~ω with respect to S. The time derivative of a vector ~A in the S ′ frame,

δ ~A/δt, will then be related to the time derivative in the lab frame, d ~A/dt, by:

d ~A

dt
=
δ ~A

δt
+ ~ω x ~A → δ ~A

δt
=
d ~A

dt
+ ~A x ~ω (3.7)
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from laws of relative motion. Applying this to equation 3.6 yields the equation of motion

for ~µ in the rotating frame:

δ~µ

δt
= ~µ x (γ ~B + ~ω) = ~µ x γ( ~B +

~ω

γ
) (3.8)

Comparing this to 3.6 shows that this equation of motion is that of ~µ in an effective magnetic

field ~Beff = ~B + ~ω/γ in the rotating frame. If we define the magnetic field in the lab frame

to be static along z: ~B = B0ẑ, the effective field ~Beff is 0 when ~ω = −γB0ẑ. This is known

as the Larmor frequency at which the equation of motion of ~µ in S ′ reduces to δ~µ/δt = 0,

indicating that the the magnetic moment does not move in the rotating frame. Hence, ~µ

precesses at the Larmor frequency ~ω in the lab frame in the presence of the magnetic field

~B = B0ẑ. The power of NMR as an experimental technique is that ~B can be measured by

measuring the Larmor frequency of a sample of nuclei with a known γ.

3.3.1 Pulsed NMR

We now extend the formalism of the previous section to include a time-varying field in

addition to B0 to demonstrate the concept of pulsed NMR as is done in [41]. Let ~B0 = B0ẑ

be a static field with the associated Larmor frequency ω0 = −γB0. We define another field

~B1(t) to be perpendicular to ~B0 and rotating with angular velocity ω in the lab frame:

~B1(t) = [cos(ωt)x̂+ sin(ωt)ŷ]B1 (3.9)

Then, in the S ′ frame which rotates with ω, ~B1 lies along x̂′. The effective field in the

rotating frame is then:

~Beff = (B0 +
ω

γ
)ẑ′ +B1x̂

′, (3.10)

where the ẑ′ term results from rotating B0 to S ′ just as was done in equation 3.8.

If we define ω1 = −γB1 as the Larmor frequency associated with B1 (where B1 is always
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be positive), the magnitude of the effective field will be given by:

Beff = [(B0 +
ω

γ
)2 +B2

1 ]1/2

= [(−ω0 + ω)2 + ω2
1]1/2

1

|γ|

Notice that comparing the new effective field to the previous section, we find that ωeff =

−γBeff represents the Larmor field associated with Beff in the rotating frame. The preces-

sion of the magnetic moment ~µ in the lab frame is a combination of this rotation and ω, the

angular velocity between the lab and rotating frame.

The angle θ between the effective field ~Beff and ~B0 can be calculated using:

tan(θ) =
ω1

ω0 − ω
, sin(θ) =

ω1

ωeff
, cos(θ) =

ω0 − ω
ωeff

(3.11)

While this angle is static, the angle between the magnetic moment and B0 in the lab frame

changes as a function of time and is given by

cos(α) = cos2(θ) + sin2(θ)cos(ωeff t) (3.12)

assuming that the magnetic moment and B0 are both aligned with ẑ in the lab frame at

time t=0 [41].

In practice, the magnitude of B1 is much smaller than B0, which gives rise to resonance:

α is small unless ω − ω0 is small (comparable to ω1). In other words, the magnetic moment

remains aligned with B0 along the z-axis, unless ω, the frequency of the field B1 is close to

ω0, the Larmor frequency of B0. This means that by turning on a field B1 with a frequency

close to ω0 for some time t, it is possible to controllably rotate the magnetic moment out of

the z-axis to some angle α, at which point the magnetic moment precesses in a cone about

the z-axis. When this rotation angle is 90◦, the B1(t) field is called a π/2 pulse which must
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have a duration of:

t1/2 =
π

2

1

γB1

(3.13)

After such a π/2 pulse is used to rotate the precession into the transverse plane, a pick up

coil can be used to pick up the induction current from this precession. The signal of the coil

is known as the Free Induction Decay (FID), since the precession decays due to relaxation

mechanisms (see next section). The FID signal can be analyzed to extract the frequency ω0,

hence providing a measure of the B0 magnetic field. This process is known as pulsed NMR.

Lastly, we must clarify that in practice, the B1 field is linear instead of rotating about

the B0 field axis. However, a linear field such as 2cos(ωt) can be separated into two com-

ponents, one rotating at ω and another rotating in the opposite direction with −ω. Due to

the resonance condition, only the ω component of the field effects the rotation, as the −ω

component is off resonance and its effect is negligible (known as the Bloch-Seigert Shift) [41].

3.3.2 Relaxation

For a collection of magnetic moments in a sample of density ρ, polarization P , and mag-

netization M = ρPµ, an NMR pulse rotates the net magnetization, M0 = Mz, initially

aligned with the B0 field (along z-axis). The rotated magnetization then precesses about the

magnetic field B0 just as was described in the previous section for one magnetic moment µ.

There are several relaxation processes that can cause ~M to rotate back to equilibrium. For

the case of water, the transverse magnetizations Mx and My decay, while the longitudinal

magnetization, Mz, aligns back with the B0 field to the equilibrium value M0 given by the

Boltzmann distribution. However, for 3He gas, the relaxation processes effectively eliminate

the longitudinal magnetization since the magnetization at equilibrium is small for the low

density gas. Note that the initial magnetization M0 in 3He is produced by hyperpolarization

of the sample via MEOP.

The relaxation of the magnetization M = Mxx̂ + Myŷ + Mz ẑ in the lab frame is given
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by the phenomenoloagical Bloch equation(s) [41]:

d ~M

dt
= ~M x γ ~B − Mxx̂+Myŷ

T2
− Mz −M0

T1
ẑ, (3.14)

where T1 is the longitudinal relaxation time for Mz to return to equilibrium, and T2 is the

transverse relaxation time over which Mx and My decay. The mechanisms causing this

relaxation are described in [32], [30], [43], and [44].

The longitudinal relaxation time, T1, can be caused by the moments losing energy to

their surroundings, or the “lattice,” which is why T1 is also known as the “spin-lattice”

relaxation time. Additionally, collisions of the nuclei with the wall of the container can

cause depolarization which contributes to the longitudinal relaxation. Due to this, T1 is also

called the “wall” relaxation time. Lastly, gradients in the transverse components of the field

Bx and By can cause rotations of the magnetic moments in random directions, causing the

longitudinal magnetization to decay. These three effects combined determine the T1 time of

the sample. For a low pressure gas in a spherical container of radius R, [44] and [45] give:

1

T1
=

8R2γ2

175D
[~∇B2

x + ~∇B2
y ], (3.15)

where D is the diffusion coefficient of the gas and is inversely proportional to the pressure

of the sample. Typical T1 times are in the few hours range. The dipole-dipole interaction of

the 3He nuclei can also cause relaxation of the polarization, which is about ∼700 hours for

atmospheric pressures of the gas. This effect can contribute to T1 but is not dominant (time

scale much longer) than the three effects described above.

T2, the transverse relaxation time, is caused by interactions of the moments with each

other, and is hence called the “spin-spin” relaxation time. Any gradients in the field lead to

the nuclei seeing a different magnetic field in different parts of the sample, which can cause

the nuclei to precess out of phase with one another. This causes the transverse magnetization

to decay. In the motional narrowing regime where the gas is at low pressure and placed in
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a high magnetic field, the observed tranverse relaxation time is known as T ∗2 and is given

by [44], [45]:

1

T ∗2
=

4γ2R2

175D
(~∇B2

x + ~∇B2
y + 2~∇B2

z ) =
1

2T1
+

8R2

175D
(~∇B2

z ) (3.16)

As pressure increases, the nuclei diffuse faster and hence can sample the different field gra-

dients in different positions within the container. This leads to a pressure broadening effect

which can result in an increased T ∗2 [45].
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Chapter 4

Low Field MEOP and NMR Studies

The theory of low field MEOP and NMR are described in Chapter 3, where we also pro-

vide references [1], [31], [33], [34]. In this chapter, we provide the details of the low field

experimental setup and procedure followed by 3He probe studies in low field.

4.1 3He Sample Cells: Making, Cleaning, and Filling

The sample cells used in this work were made of of borosilicate glass (Pyrex) by University

of Michigan’s in-house glass blower, Roy Wentz. Four cells were blown into approximately

2 cm diameter spherical bulbs attached to ‘stems’ of 4 mm OD, 3 mm ID glass tubes 10

cm long. The opposite side of these stems were attached to a 10 mm OD tube, with the

stems spaced by about 6-7 cm in a manifold as shown in Fig. 4.1a. The 10 cm tube also

had short 4 mm tubes mounted directly across from each cell and stem for cleaning the cells.

These tubes were initially open tubes, but were closed off with a glass-blowing torch after

the cleaning process, described below, was completed. An unavoidable small part of the

stem remained attached to each cell due to the pull off.

We cleaned the cells with a rigorous cleaning process using a solution called piranha −

a mixture of 70% sulfuric acid and 30% hydrogen peroxide. The cells were first rinsed with

methanol and deionized (DI) water 3 times each and then filled with piranha, which was
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(a) Four 3He glass cells mounted on the vacuum and gas filling
system. One of the cells is glowing due to the RF discharge.

(b) Single 3He cell and
stem after pull off. The
loop of wire is one of
the two coils connected
to the transformer used
to strike the discharge.

Figure 4.1: 3He cells before and after pull off from string.

stored in the cells for ∼15-20 hours as this was the major cleaning step for removing all

organic matter from the glass. The piranha was then carefully poured out and the cells were

again rinsed with DI water 3 times, followed by 3 rinses with high purity methanol, and 3

more rinses with DI water.

After the cleaning process, the cells were baked in an oven at 100◦C temperature for ∼12

hours to remove any remaining residue. We then mounted the cells onto a vacuum system to

pump them out using 2-3/4” conflat flanges and wrapped heat tape around them to provide

heat for the process (100-200◦C). The cells were pumped down to 10−8 Torr over a period of

1.5 days and then filled with pure 3He gas. Before pulling off each individual cell from the

group, we checked the purity of the gas. This was done by striking a high radio-frequency

(RF) discharge in the gas (which is also the first step of MEOP) and studying the glow from

this discharge with a spectrometer (Ocean Optics USB4500). The discharge glow can be

seen in Figure 4.1. We checked the gas purity by studying the wavelength of each line in the

discharge emission spectrum.

We found through this test that some Xenon had leaked into the cells from our gas filling

system (see Figure 4.2a), as confirmed by comparing the observed emission lines to xenon

spectral lines from the National Institute of Standards and Technology (NIST) database [46].
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(a) Initial spectrum of cell after filling. (b) Cell spectrum after Xenon freeze out.

Figure 4.2: Spectrum of cell as measured by spectrometer before and after freeze out.

This was not surprising since the filling system was also used to fill cells with a mixture of

3He and enriched 129Xe for another experiment in our research group [47]. We were able

to freeze out the xenon by holding a cup of liquid nitrogen around one of the cells, leaving

only pure helium gas in the remaining cells. The purity was again checked by looking at the

emission spectrum of the discharge with a spectrometer (Figure 4.2b) and comparing it to

typical Helium emission lines from NIST [46]. Note that these helium lines were suppressed

when the xenon gas was present in Figure 4.2a.

Once the purity of the gas was confirmed, we pulled off each cell in our lab using glass-

blowing methods, and they were ready to be polarized with MEOP. Each cell was about 1

inch in diameter and consisted of a 0.25 inch stem due to the pull off from the tube as shown

in Figure 4.1b.

4.2 Low-field MEOP: Experimental Setup

4.2.1 RF Discharge and Optical Pumping

As explained in Section 3.2, the first step of MEOP requires exciting the 3He gas with a

radio-frequency (RF) discharge. We generated the signal using a function generator, Sanford

Research Systems (SRS) Model DS345, in the MHz frequency range and sent it through an

amplifier (ENI RF Power Amplifier, Model A150, 40 W, 50 dB [48]) to increase the amplitude
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Figure 4.3: Electronics for striking 3He discharge.

(a) Side view (b) Top View

Figure 4.4: Transformers made to strike 3He discharge. N=80 turns for grey or white wire,
N=2 turns for red wire.

of the rf wave. The cable then split into two 0.5 inch diameter coils that were wrapped around

the 3He cell (see Figure 4.1b). We found that the amplifier gain was not high enough to

strike a discharge, partially due to the coils having a different resonant frequency than the

amplifier output. To address this issue, we made several iterations of transformers to match

the resonant frequency of the amplifier as well as to amplify the signal further. Figure 4.3

shows the diagram for the final electronics used to strike the 3He discharge including the

transformer.

The final transformer design consisted of two sets of wrapped wires, one 22 AWG wire

with 2 turns (primary) and another 18 AWG magnet wire with 80 turns (secondary), giving a

voltage gain of about 40. Two of our home-built transformers are shown in Figures 4.4a and

4.4b; each steps up the voltage, decreasing the circuit current in the process. The resonant

frequency of the circuit ranged from 4 to 6 MHz depending on the transformer and cell.
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Since the cell loads the coils, the impedance and hence the resonant frequency both depend

on the cell. The initial function generator amplitude of 200-350 mV was amplified with the

EIN rf amplifier to 20-40 Volts, stepped up through the transformer and finally delivered to

the cell through the circular coils.

After successfully striking a discharge in the sealed cells, we carried out studies of its

glow spectrum with the spectrometer as described in the previous section to further confirm

purity after the cells were sealed. We also studied the absorption spectrum of the gas using

a single-wavelength laser at 1083 nm, the resonant wavelength between 2S and 2P levels of

3He gas, and the relevant transition for MEOP (see section 3.2 for MEOP theory). The

laser was a 50 mW Distributed Bragg Reflector diode (SDL-6700) with power provided by

a Thorlabs LDC500 current controller. The wavelength of the laser could be tuned by 2

nm by changing the temperature of its grating reflector using Thorlabs TEC 2000. The

absorption spectrum was studied with the discharge on since the discharge initializes the

electrons into the 2S state, from which they are excited by the laser. As the laser wavelength

was tuned, we observed the absorption dips by measuring the power of the beam transmitted

through the cell incident on a detector - either a photodiode (Thorlabs PDA100A) connected

to a voltmeter or a power meter (Coherent LabMax Top). Figure 4.5 shows the measured

absorption spectrum which agreed well with a typical 3He energy spectrum from [1], [33].

The comparison was used to label each absorption dip from Figure 3.2, specifically the C8

and C9 lines relevant for MEOP.

For MEOP, specifically for the optical pumping step, a magnetic field must be present.

As shown in Figure 4.6, we placed the cell in the center of 14 cm diameter Helmholtz coils,

providing a magnetic field of B0 ≈ 7.5 Gauss, as measured by a Hall probe. The 1083 nm

laser beam propagated parallel to B0 and was tuned either to the C8 or the C9 absorption

line. The beam was expanded to about 1 inch diameter using a lens, to cover the cell. Since

the goal was to optically pump the atoms into a magnetic sublevel, the resonant light needed

to be circularly polarized, either left or right. This was accomplished with a linear polarizer
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Figure 4.5: Measured 3He absorption spectrum at low field with labels for each absorption
line from Figure 3.2.

(LP) and a quarter wave plate (QWP) (Figure 4.6). The absorption step for MEOP could be

checked with the transmission of an unpolarized beam through the sample cell and turning

the B0 field on and off. We saw the transmission power increase when the field was turned on

as expected. The gas absorbed less light with the magnetic field on since the nuclei aligned

with or against the field, instead of aligning with any random stray field present in the room,

and hence absorbed only the σ+ or σ− component of the beam.

4.2.2 Polarimeter Design and Calibration

Once the laser hyperpolarized the gas via MEOP, the nuclear polarization could be deter-

mined by measuring the circular polarization of 668 nm light emitted in the discharge, as

explained in Section 3.2 and reference [37]. We measured the circular polarization of this

light with a polarimeter (based on [37]) consisting of a liquid crystal retarder (LCR), an

analyzing linear polarizer (A), and a photodiode detector (PD), as shown in Figure 4.6. The

LCR (Thorlabs model LCC11125-A) contains nematic liquid crystals which change their

orientation based on an applied AC voltage, and this determines the retardance of the plate.

By tuning the applied AC voltage with the Thorlabs controller (LCC25) connected to the

LCR, we could tune the LCR to behave as a λ/4 or 3λ/4 plate. Hence, a linearly polarized

beam incident on the LCR would become left or right circularly polarized, while a circularly
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(a) Diagram of experimental setup for MEOP.

(b) Picutre of experimental setup for MEOP.

Figure 4.6: MEOP experimental setup diagram (a) and picture (b) showing: 3He cell and
discharge coils, optics for optical pumping, polarimeter, and Helmholtz coils.
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polarized beam would become linearly polarized, at the correct applied voltage.

In order to determine these specific voltages, we calibrated the LCR by sending an already

circularly polarized beam through the polarimeter. We used a 632 nm HeNe laser to be close

to the wavelength of interest, 668 nm from 3He emission, as the tuning voltages have a

wavelength dependence. Later, this laser was replaced with a 10 mW diode laser at 670 nm

(Thorlabs HL6748MG) for a more accurate calibration with current provided by a Thorlabs

LDC500 controller. To perform the calibration, the light from the calibration laser was

circularly polarized to nearly 100% by propagation through a linear polarizer (LP) and a

quarter wave plate (QWP), and then incident on the polarimeter. Within the polarimeter,

the beam was transmitted through the LCR, the analyzer, and was finally incident on a

photodiode which measured the transmitted power. To eliminate signal from background

light and other lines of the 3He discharge, we also used an interference filter (F), Thorlabs

FL670-10, to specifically select 670 +/- 2 nm light, in the setup right before the photodiode.

Measuring this power as a function of the LCR voltage produced the calibration curve of

the LCR, shown in Figure (4.7), which gave the relationship between applied voltage and

plate retardance. Note that the minimum power for λ/4 was > 0 V due to unavoidable

background light.

Since the LCR’s slow axis and the analyzer’s axis were set at a 45◦ angle from each other,

the voltage values for the minimum and maximum points on this curve corresponded to λ/4

and 3λ/4 wave plate settings, respectively. This is because for example in the case that a

right circularly polarized beam was incident on the LCR tuned to λ/4, the polarization would

change to linear in the vertical direction, and the beam would be completely blocked by the

horizontal analyzer that followed. Similarly the beam passing through 3λ/4 LCR would

become horizontally polarized, giving a maximum power measurement on the photodiode

after passing through the horizontal analyzer.
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Figure 4.7: LCR Calibration Curve produced with 632 nm HeNe laser.

4.2.3 Measurement of Nuclear Polarization

Once the LCR was calibrated, we could use the polarimeter for 3He. As shown in figure

4.6, we detected the 668-nm light from the discharge glow with the polarimeter placed at an

angle θm from the incident optical pumping beam. For this measurement, the LCR voltage

was modulated between λ/4 and 3λ/4 at a frequency of 20.1 Hz controlled by an external

function generator − SRS (Sanford Research Systems) Model DS345. Hence, the power

measured by the polarimeter would oscillate between reading a maximum power and 0 V for

a 100% circularly polarized beam. For a beam with some degree of polarization less than

100%, the difference in the two power measurements would then provide a measure of the

degree of circular polarization.

The detector voltage was read out by an oscilloscope (Tektronix TDS 2024C) or a Lockin

amplifier (SRS SR830), both of which used the 20.1 Hz function generator output for trig-

gering/syncing. The ratio of the amplitude of the oscillating signal (∆V = Vmax − Vmin)

detected at this reference frequency to the total signal with the background subtracted gave

a relative measure of the degree of circular polarization of incident light. To get the absolute

degree of this circular polarization, we divided this ratio by a calibration factor, determined
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by making the same measurement (∆V/Vtotal) with the calibration laser:

Pcirc =
∆V3He

Vtotal,3He − Vb
Vtotal,calib − Vb

∆Vcalib
100%, (4.1)

where ∆V3He and ∆Vcalib are the voltage differences between the maximum and minimum

transmitted power for 3He and the calibration laser, respectively, Vtotal denotes the total

measured voltage for each, and Vb is the voltage measured for the background light in the

room. At this point, we also made a correction of cos(θm) to account for the angle of

the polarimeter from the incident beam, and multiplied by the pressure correction factor

from [38] to calculate the nuclear polarization in the sample:

P3 = Pcirc
fp

cos(θm)
(4.2)

Here, P3 is the nuclear polarization in 3He and fp is the pressure correction factor. Using

this setup with θm ≈ 45◦ and fp = 10.1 from [38] for 2 Torr gas, typical measured values

were ∆V3He =4 mV, Vtotal,3He− Vb = 180 mV, and (Vtotal,calib− Vb)/∆Vcalib = 0.95. Plugging

these into the above equation yielded measured nuclear polarization in the cells to be ∼32%.

4.2.4 Verification Tests

In order to verify that the observed signal resulted from the nuclear polarization of the gas,

and not caused by something else, we performed the following tests:

• Detuned the laser wavelength off resonance (away from C8 and C9),

• Changed the polarization of the optical pumping beam (circular polarization to unpo-

larized beam),

• Turned off the laser entirely, and

• Turned off the magnetic field,
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In each case, we saw the polarization signal disappear, except when a small residual po-

larization was seen after the magnetic field was turned off. In the case of laser detuning,

beam polarization change, and beam turn off, we expected the signal to vanish as the gas

sample was no longer being hyperpolarized. For the magnetic field test, a small remaining

polarization was not surprising as this could have been caused by stray fields in the room.

Additionally, we applied a quenching field by using an oscillating magnetic field (B1) near

the 3He resonance frequency of 25.3 kHz, which would mix the populations of the magnetic

sublevels and destroy the polarization. Indeed turning on this field, we saw the polarimeter

signal reduce to 0.

4.3 Experimental Apparatus and Electronics for NMR

After the gas in the cell was hyperpolarized via MEOP, and the polarization was confirmed

and measured with the polarimeter, the NMR technique could be employed to measure the

magnetic field B0 of the Helmholtz coils in which the cell sat. In other words, we could start

using 3He gas as a magnetometer at low field.

4.3.1 CW NMR

Using the Hall probe measurement of the field B0=7.8 G defined along the z-direction and the

3He gyromagnetic ratio = 3.24 kHz/G [25], the resonance (Larmor) frequency (see Section

3.3) was estimated to be ω/(2π) = f = γB = 25.3 kHz. We also measured this value with

an RF coil orthogonal to B0 to create a oscillating B1(t) field in the transverse plane along

the y-axis (vertical in the lab), just as was done in the previous section. As the frequency

of this field was tuned with a function generator (SRS DS345), the polarization signal from

the gas decreased and reached a minimum at the resonant frequency. This is because at

this point, the rotating field mixed the magnetic sublevel populations in the 23P state, hence

destroying the polarization. Figure 4.8a shows the data yielding a resonant frequency of 25.2
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kHz, which agreed well with our calculation.

We performed another check of this frequency measurement by monitoring the power

of the transmitted optical pumping beam, which increased at the resonant frequency. This

indicated that less light was being absorbed by the sample due to state mixing, verifying

the Larmor frequency value. Lastly, we slowly increased the amplitude of B1(t) at the

resonant frequency, and the polarization signal decreased (Figure 4.8b) as expected, since

the increasing field strength caused a larger effect on the polarization.

4.3.2 Pulsed NMR

Before implementing pulsed NMR, we improved the setup by replacing the small set of

Helmholtz coils (7 cm radius) which created B0 with a larger set of coils (25 cm radius).

The assumption here was that the larger coils would produce a more uniform field while the

smaller coils gave rise to larger field gradients, which would greatly reduce the length of the

NMR FID signal (T2*) as discussed in Section 3.3. A current of 27.9 A was applied with a

Kepco power supplly to larger HH coils and produced a field of 25.8 +/- 0.2 G as measured

(a) Polarization signal amplitude reaches a mini-
mum at the resonant frequency.

(b) Polarization signal amplitude decreases when
field strength is increased at resonance.

Figure 4.8: CW NMR studies at low field. The error bars are due to voltage measurements
of polarization signal, uncertainty of cell pressure, and polarimeter calibration.
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Figure 4.9: Electronics diagram for low field NMR.

by a Hall probe. Hence the Larmor frequency used for NMR with these coils was 83.6 kHz.

The electronics diagram for pulsed NMR setup is shown in Figure 4.9. Two RF coils were

used, one for excitation (pulse coil) with 3 turns and a 1.5 cm radius, and another 180-turn

coil with a 1.75 cm radius for picking up the signal. Both coils were placed approximately

perpendicular to each other with their axes aligned in the x- and y-directions so both were

orthogonal to the magnetic field produced by the Helmholtz coils (z-direction). A 0.7 cm

thick cylindrical aluminum shield was placed around the entire setup (3He cell, discharge

coils, and NMR coils) to reduce electrical noise, as discussed below. The NMR pulse sent

to the pulse coil was gated by a CMOS switch (labeled Gate Box in diagram) controlled

by an analog output on a National Instruments (NI) X-Series USB 6363 data acquisition

(DAQ) box controlled by an NI LabVIEW program. The switch determined the width of

the NMR pulse (1 ms), while the 83.6 kHz frequency was provided by a function generator

(SRS DS345) − the local oscillator (LO) − with a 10 V amplitude.

The NMR precession created in the sample was then picked up by the secondary coil

as an induction current and the resulting voltage was sent to a preamplifier (SRS SR560),

which served as a bandpass filter to remove noise between 10 kHz and 1 MHz and amplified
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the signal with a gain of 1000. This signal was read by a lock in amplifier (SRS SR830) with

a 1 ms time constant and an additional gain of 100, which used the frequency from the local

oscillator as a reference, and acting as a mixer and a bandpass filter, mixed it with the signal

frequency. The mixed down signal was input to the NI DAQ analog input channel. After a

2 ms blanking pulse sent to the pramp with an NI output channel to avoid overloading the

device, the signal was read and saved by the LabVIEW program for ∼50 ms. This was the

final configuration developed for the low-field pulsed NMR shown in Figure 4.9. A number of

investigations and improvements, descried below, led to this setup, including implementation

of the blanking pulse and addition of the aluminum shield.

To ensure our electronics and experimental setup were well-suited to read the signal we

searched for, we first estimated the size of the NMR signal making some basic assumptions.

The 3He nuclei precessing at the frequency ω = 2π(83.6 kHz) would produce a magnetic

field B3 proportional to the magnetization in the sample:

~B3(t) =
µ0

4π
Msin(ωt+ φ) (4.3)

The magnetization would be given by:

M = P3[
3He]µ3 (4.4)

where P3 is the polarization of the gas (measured at ∼30%), [3He] is the density calculated

using the ideal gas law (PV = NkT ) at 2 Torr pressure and room temperature for the 1

cubic inch cell volume, and µ3 is the permeability of the gas, calculated by multiplying the

known permeability of water by the ratio of the gyromagnetic ratios [27], and another factor

to correct to Torr (760 Torr = 1 atm): µ3 = µwater(γ3/γwater)/760.

The flux created by this field would produce an EMF ε in the pick up coil with area

A = πr2 (r = 1.75cm) as determined by Faraday’s law: ε = -dΦ/dt = −AdB/dt. Hence, the
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maximum ε would be:

εmax =
µ0

4π
MωA =

µ0

4π
P3[

3He]µ3ωπr
2 (4.5)

The final result is attained after multiplying by three more factors:

• N , the number of turns of the coil, which is calculated using the inductance L =

µ0N
2A/l, where A and l are the inner core area (radius=1.5cm) and length (0.8 cm) of

the coil, respectively, and L can be determined using the relationship of the resonance

frequency to the inductance of the coil: ω0=1/
√
LC, where C = 10nF. The calculation

yields N = 174 turns.

• the Q of coil. This is measured by first determining the resonant frequency of the coil,

f0, then tuning the frequency until the signal amplitude is
√

2 times the amplitude at

f0, which occurs at two frequencies, one lower and one higher than f0. We then use

the difference of these two frequencies (∆f√2) to calculate Q = f0/∆f√2 = 19.6.

• the filling factor f , which is a measure of the efficiency of the coil, i.e. the percent of

the B3 field created by the nuclei that is picked up by the coil. We estimated f ≈ 0.2.

Putting this all together gave the final estimate for the amplitude of the NMR signal with

30% gas polarization: 0.26 µV.

We found that the electrical noise in the setup was much higher than this number. To

study this noise in more detail, we hooked up the NMR system to a spectrum analyzer

(SRS Model SR760) and observed the frequency resolved spectrum of this noise. In addi-

tion to expected 60 Hz noise, we observed a broad peak at 83.5 kHz with an amplitude of

500 µV/
√
Hz, as well as background noise levels greater than 100 µV/

√
Hz present at all

frequencies. We attributed the 83.5 kHZ noise peak to ringing of the pick up coil due to

the excitation pulse being close to coil resonance. To eliminate the background noise, we

placed a cylindrical aluminum shield (0.5 cm thick) around the sample cell and NMR coils,

and changed the grounding scheme by grounding the shield and signal cable instead of the
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pick up coil electronics box as was done previously. This resulted in the background noise

reducing to 10 µV/
√
Hz. However, the 83.5 kHz noise peak remained. This, of course, was

expected due to the resonance of the coil.

Another issue in the electronics was that the preamplifier between the pick up coil and

lockin was overloading when attempting to read the signal, likely due to the excitation pulse

leaking into the pickup. To solve this issue we implemented a blanking pulse so that the

premp would start reading data 1 ms after the excitation pulse (also 1 ms long) ended. The

same LabVIEW program and NI DAQ box in Figure 4.9 were used to control the length

and timing of this pulse sent to the preamplifier. Lastly, the preamp was set to measure in

low-noise mode, with a high-pass filter of 10 kHz, a low-pass filter of 1 MHz, and a gain of

1000. Once these changes were implemented, we observed NMR signals with amplitudes in

the range of 0.5-1 V. Taking the preamp gain (1000) and lockin gain (100) into account, the

signal created by 3He nuclei precession was ∼0.1 µV, which is 2-3x smaller than our predicted

value, probably due to a combination of effects including the estimated filling factor.

4.4 Low Field NMR signal and studies

The NMR signal was measured and stored using LabVIEW and analyzed in Matlab. The Free

Induction Decay signal was modeled as a decaying sinusoidal wave, with a decay constant

T ∗2 . The function used to fit the data in Matlab was:

V (t) = A+Bcos(ωt+ φ)exp(−t/T ∗2 ) (4.6)

where A is an offset, B is the signal amplitude, ω = 2πf is the mixed down frequency, φ is

the phase, and T ∗2 is the transverse relaxation time discussed in Section 3.3. All five of these

parameters were extracted from the fit in Matlab, which used the average amplitude of data

from a noise run for the weighting. See Appendix A for a discussion of the fit model. Figure

4.10 shows a sample FID signal fit to the above equation, with the fit frequency measured
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Figure 4.10: 3He NMR FID signal at low field.

to 5 ppm (f = fLO + fmix =83600+132.72+/-0.48 Hz). The average T ∗2 of the signal was

about 10 ms.

4.4.1 Studies of signal

The following studies were completed to gain a better understanding of the signal and de-

termine the experimental procedure limits that produced the signal:

• The polarization time for MEOP was varied to identify the minimum time needed

to produce an NMR signal via MEOP. A signal was seen for as short as a 5-second

polarization time for this qualitative study (Figure 4.12).

• The time between turning the discharge off and firing the NMR excitation pulse was

varied. Since the discharge being turned off marks the end of the polarization process,

after which the polarization decays, this study gave a measure of T1, or how long the

NMR signal lasts once the sample is polarized. The signal amplitude was plotted as

a function of the time between polarization and NMR (Figure 4.13), and fit to an

exponential (∝ e−1/T1), yielding a T1 of 30 ± 5 seconds.

• MEOP and NMR were performed on two different cells. The cell with the longer
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stem had a shorter T ∗2 and a slightly larger frequency (Figure 4.14). This matched

expectations as we predicted that the nuclei in the stem as well as the glass stem

itself (due to diamagnetism of glass) created a dipole field, increasing the measured

frequency. Note depending on the orientation of the stem, the frequency could also

decrease. The stem as a dipole model is discussed further in Chapter 6. We also

expected the longer stem to create higher gradients yielding a shorter T ∗2 .

• Significant variations of signal size, frequency and T ∗2 were observed due to changes of

the field and gradient in the room. For example during one signal study, we noticed a

shorter T ∗2 (∼7.8 ms vs. ∼10.4 ms) and a 20 Hz shift in the frequency (Figure 4.15).

After some inspection, we realized that a metal chair had been brought near the set

up. While this was an accidental discovery, it showed the incredible sensitivity of the

3He magnetometer.

Lastly, we replaced the coax cable connected to the pick up coil in the setup with a twinax

cable. After this change was implemented, we observed increased T ∗2 time of the signal from

10 ms to 300 ms. While data was not recorded for these measurements, a screenshot of the

FID read by the LabVIEW program is shown in Figure 4.11.

Figure 4.11: Longer T ∗2 = 300 ms measured after switching to twinax cable.
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Figure 4.12: FID signals after varying polarization time: 5 seconds to 120 seconds.

Figure 4.13: 3He NMR FID signal amplitude decay as a function of time between polarization
with MEOP and NMR measurement giving a measure of the T1 relaxation time.
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Figure 4.14: 3He NMR FID signal for different sample cells.

Figure 4.15: 3He NMR FID signal with and without a chair near the setup.
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Chapter 5

High Field MEOP and NMR

The theory of high field MEOP and NMR are described in Chapter 3, where we also provide

references of comprehensive high field MEOP studies [1], [39], [40], [35]. In this chapter, we

provide the details of the high field experimental setup and procedure followed by 3He probe

studies in high field.

5.1 Changes for High Field

We moved the 3He magnetometer from the University of Michigan’s low field Helmholtz coils

to a high field magnet facility at Argonne National Lab. In addition to the magnet, we also

incorporated a higher power laser and modified the probe materials to be more suitable at

high fields.

5.1.1 Magnet

A superconducting MRI magnet shown in Figure 5.1 was recycled from a medical facility

and brought to Argonne National Lab to test and calibrate various magnetic field probes

for the Fermilab muon g-2 experiment (E989). The magnet has a 68 cm cylindrical bore

and is capable of producing a magnetic field between 1-4 Tesla along the axis of the cylinder
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Figure 5.1: High field superconducting MRI magnet at Argonne National Lab.

controlled by the current in the superconducting coils (400-500 Amps). The magnetic field

strength used was 1.45 T, the same as the E989 magnet, for all high field magnetometry

performed at Argonne and described in this work. The Argonne team iteratively distributed

small sheets of iron near the inner bore of the magnet to maximize field homoegeneity

passively. Additionally, the magnet contains “active” coils, which could be turned on and off

on a short time scale (few seconds). The currents through these coils actively create linear

and higher order gradients within the magnetic field in all three directions and can be used

to improve field homogeneity to ∼9 ppb/mm. Since the magnet is superconducting, the

temporal stability is also very good, with field drifts of <10 ppb/hr achieved.

5.1.2 High Power Laser

As described in section 3.2.2, the weaker hyperfine coupling of the 3He energy sublevels at

high fields (>0.1 T) makes it harder to achieve nuclear polarization in the sample, which

must be compensated for with a higher power laser. As the Zeeman splitting of the energy

levels also increases, the laser must be tunable over a wider energy range. We thus acquired

a Keopsys laser (CYFL-GIGA-02-LP-1083-WT1-FM1-ST1-OM1-B206-F1) [49] specifically

built for our setup with the following features:

• Power emission between 100 mW to 2 W,

• Central wavelength at 1083 nm,
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Figure 5.2: Wavelength tuning of Keopsys laser at different external voltages.

• Spectral linewidth 2 GHz

• Tunable over entire 3He absorption spectrum (200 GHz),

• A single-mode fiber for beam output (linearly polarized),

• 5 meter long output fiber, so that the laser electronics could be placed outside the high

magnetic field range,

• Fiber output with ceramic ferrule, instead of metal parts (to minimize material effects

on magnetic field measurement), except for a small 2-mm thick metal clip.

The laser wavelength could be controlled with an external power supply for coarse ad-

justments and a knob on the laser for finer adjustments. Figure 5.2 shows the range of

wavelengths measured by applying different external voltages and tuning the laser knob.

These scans were taken by measuring the wavelength with a wavemeter (HighFinesse GmbH

WSU [50]) at University of Michigan.

The laser was then transported to Argonne National Lab, and due to safety requirements,

the fiber and beam were always enclosed in a mount (see section 5.1.3) during operation. We

found the 3He absorption lines relevant for MEOP at 1.45 T by measuring the absorption

of the laser through the cell with the discharge on. As the laser wavelength was scanned by

changing the external applied voltage and knob voltage, the power of the transmitted beam

was measured either directly on a Thorlabs Detector (FDS10X10) or using a multimode
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Absorption Line Ext. Voltage Knob Setting

f−2 4.05 V 6.68
f−4 4.05 (or 4.3) V 8.78 (or 4.00)
f+
4 4.3 V 3.84
f+
2 4.3 V 1.50

Table 5.1: Laser voltage settings for 3He absorption lines at 1.45 T.

fiber with a ceramic ferrule (Thorlabs PM780-HP Custom, 5 m). Both of these devices were

connected to a voltmeter which displayed voltages proportional to the power of light incident

on the detector or fiber. The four measured absorption dips were labeled f−2 , f
−
4 , f4+, and

f+
2 based on comparison with the 3He absorption spectrum from [1] shown in figure 3.3b.

Table 5.1 gives the laser voltage settings for each absorption line found through these scans.

5.1.3 3D Printed Mount

We designed a mount to be 3D printed with polylactic acid (PLA) plastic using SOLID-

WORKS software [51]. The motivation for 3D printing was to use low-susceptibility mate-

rials to construct the 3He magnetometer to minimize field perturbations and have control of

small design elements with specific shapes. The ∼4 mm resolution of the 3D printed pieces

is hard to achieve with machined parts, which can also accumulate ferromagnetic residue

from the machine tools. The mount was a rectangular prism with a 5 x 5 cm cross section,

and a length of 16 cm, printed as two halves which fit nicely into each other as one contains

slots and the other contains wedges (see Figure 5.3a).

The mount contained specific slots for all of the optics needed for MEOP - the laser fiber

ferrule, the absorption fiber ferrule, linear polarizer, and quarter wave plate, as well as the

sample cell, discharge coils, and the NMR coil as shown in Figure 5.4. The laser fiber was

inserted into a hole located at the center of a circular disk made with nylotron, and this disk

was inserted into the left-most slot in the mount, 1.5 cm from the left-most edge. The fiber

ferrule reached about 0.5 cm beyond the nylotron disk. About 2.6 cm from the laser fiber

was another slot intended for the linear polarizer (LP). However, we determined that the
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linear polarizer was unnecessary once the polarization axis of the fiber was found since the

output beam was already linearly polarized. The quarter wave plate (QWP) was mounted

in a slot 0.75 cm away from the intended LP position.

The center of the 3He cell was located about 9.1 cm from the laser fiber. Figure 5.3b

shows the fiber mounted closer to the cell (6cm away) in the linear polarizer slot, because

the placement of the fiber had not been finalized at the time this picture was taken. The

additional distance between the fiber and cell allowed for the beam to expand to about a

2 cm diameter, covering more of the 2.5 cm height of the cell. Around the central location

of the cell, the top half mount had slots cut out for the discharge coils to be inserted and

placed around the cell 1.4 cm apart.

There were several iterations of the probe mount, and the final design shown in Figure 5.5

also included slots on the top and bottom halves of the mount for the NMR saddle-shaped

coil (see section 5.1.5) located 3.65 cm from the quarter wave plate. Lastly, on the side of

the mount opposite to the laser fiber was a slot for the absorption fiber (or photo detector

for earlier versions of the mount). Both the absorption fiber and the NMR coil were inserted

into the slots of the mount and held fixed with 1 cm pieces of masking tape. The slot next

(a) 3D printed mount for 3He probe:
top and bottom halves.

(b) 3D printed mount with MEOP optics, cell,
NMR coil, and discharge coils inserted.

Figure 5.3: 3D printed probe mount for high-field magnetometry.
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Figure 5.4: Locations of optics, saddle coil, and 3He cell in 3D printed probe mount.

to the absorption fiber was intended for a neutral density filter in case the light from the

3He discharge needed to be blocked out in favor of the laser. However, the absorption fiber

signal from the laser light was much higher than noise, and the filter was not needed.

5.1.4 Discharge Coils and Shielding

Due to safety regulations at Argonne National Lab, the transformer and the discharge coils

had to be placed in a metal box to attenuate radio frequency (RF) radiation emission. We

initially used a 18.3 cm x 8.1 cm x 11.9 cm rectangular aluminum box (see Figure 5.5a)

and inserted the entire 3He setup, including the 3D printed mount and transformer, into the

box. However, in an effort to use less materials, specifically to eliminate aluminum in the

apparatus, we lengthened the wires from the transformer to the discharge coils by about 10

cm, and placed the transformer in a smaller aluminum box (∼6.4 cm x 5.8 cm x 3.5 cm). This

allowed the shielded transformer to be placed 10 cm away from the 3He cell and hence the
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effect (or perturbation) on the magnetic field measurements was reduced. We then wrapped

a 0.08 mm thick copper shield around the 3D printed 3He mount for protection from RF

radiation and to eliminate electrical noise for NMR measurements (see Figure 5.5b).

We also found when testing MEOP in the magnet that only one orientation of the dis-

charge coils reliably struck a discharge in the cell. When the coil axes were parallel to the

magnetic field, the discharge turned on, however when the coils were placed perpendicular

to the field, they were often unsuccessful at striking a discharge. When the same tests were

performed in the fringe field of the magnet, the discharge turned on independent of the coil

orientation. We slid the cell from the fringe field to the higher field area of the magnet and

observed that the discharge turned off when the coil axes were perpendicular to the field axis

and remained on when they were parallel. Hence the discharge coils were mounted with the

plane of the coils perpendicular to z (coil axes parallel to ~B) for all high field measurements

discussed in this work.

5.1.5 NMR Coil: Saddle Coil

A circular coil with area A, N turns, and length l has inductance L = µ0N
2A/l. If a

capacitance C is added, the LC circuit frequency is given by ω0 = 1/
√
LC. Combining the

(a) 3He Probe in metal box.
(b) Probe with copper shield after transformer is
moved away (shown on left).

Figure 5.5: Before and after removing aluminum box.
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two we have:

ω2
0 =

l

µ0N2AC
. (5.1)

This shows that the frequency of an NMR coil is inversely proportional to the number of

turns. Moving from low field to high field, the NMR frequency of 3He nuclei changes by 3

orders of magnitude ((2π)83 kHz to (2π)47 MHz). Since our low field coil had less than 200

turns, the high field NMR coil could only be allowed to have 1 or 2 turns to compensate for

the 3 orders of magnitude change in field.

On the other hand, from Section 5.1.5, the FID signal voltage picked up by such a coil is

given by:

εmax =
µ0

4π
MωANQf, (5.2)

implying that the signal is directly proportional to the number of turns in the coil. While

the smaller N potentially reduces the signal size, the signal amplitude is also proportional

to the NMR frequency ω which increases by 3 orders of magnitude as previously mentioned.

While these effects almost cancel out, we aimed to increase all factors contributing to the

signal size (and the signal-to-noise ratio SNR). Specifically, we focused on the filling factor

f of the coil which is a measure of its efficiency, determined from the proportion of the

NMR signal picked up by the coil to the total signal generated by the precessing nuclei

(f =
∫
sample

B2
1dV/

∫
all−spaceB

2
1dV ).

At low field, we used a circular coil placed 1 cm away from the 3He cell, so the coil picked

up the nuclei precession from only one side of the cell, which lowered its filling factor. If

we had placed the coil right around the cell, the filling factor would be much larger. This

discrepancy was taken into account when the signal size was estimated for low field in the

previous chapter. To maximize this filling factor for high field, any circular NMR coil would

thus have to be placed directly around the cell. To do this we would have to align the coil

axis perpendicular to the magnetic field as is needed for NMR with the coil itself placed

in the x-z or y-z plane. In either case the coil would block the optical pumping beam and
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MEOP would not be possible. To avoid this issue, we instead used a saddle shaped coil as

is common for NMR applications, for example see [52]. Figure 5.6 shows the drawing and

photo of a prototype coil, which consisted of four 1.1 cm radius arcs connected by four 3.4

cm long straight wires. When current (direction indicated with orange arrows) runs through

the coil, the field due to the arcs cancel and the field due to the straight wires add up (field

direction indicated with blue arrows).

Since there are four wires, two on each side, with the flow of current opposite on each side,

we see from the right hand rule that the field created is either up or down (down in the case

of the current flow shown in 5.6a) in the center of the coil and orthogonal to the horizontal

wires. Hence the field is generated from the 2 sets of 2 wires making this a 2-turn coil. Figure

5.6b shows an actual photo of a prototype saddle coil which was first constructed for testing

with 16 AWG wire. We later used a different coil designed with the same basic principle but

using 20 AWG magnet wire (CNC Tech model MW35-C HV) and non-magnetic capacitors.

The saddle coil was placed around the 3He cell so that the straight wires were oriented

along the z-direction on either side of the cell, producing the oscillating field ~B1(t) from the

NMR pulse in the + or − y direction. The arcs on either side of the cell were oriented in

the y-z plane, and since the wires curve up and down, they allowed space for the optical

pumping beam. Hence polarization via MEOP remained possible while the filling factor was

maximized since the coil wires were placed on both sides of the cell. The same geometry

allowed the horizontal wires of the coil to pick up the induction current from the field created

by 3He nuclei precession following the NMR pulse as the nuclei precession was in the x-y

plane (orthogonal to the B-field along the z-axis).

As discussed earlier, the saddle coil frequency must be tuned to 47 MHz in order to be

used for 3He NMR. We measured the inductance of the coil with an inductance meter. For

a coil with 3.4 cm long straight wires, and 2 cm radius arcs, the inductance was measured

to be 0.36 +/- 0.1 µH. The circuit used for tuning the coil is shown in Figure 5.7, where

we treat the coil with some inductance L and resistance R, and place it in parallel with
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(a) Saddle coil drawing: current direction indicated
with orange arrows, magnetic field direction in blue.

(b) Photo of first saddle coil with
tuning capacitors soldered on.

Figure 5.6: Saddle Coil design and photo.

Figure 5.7: Circuit for tuning and impedance matching saddle coil.

a capacitor Cp, which determines the resonance frequency. This circuit, which we call the

tuning circuit, is then connected in series with a capacitor Cs for impedance matching. In

order to determine the capacitance needed for resonance at 47 MHz, we analyze the circuit

and impedance match [53].

Using ZR = R, ZL = iXL = iωL and ZC = −i/(ωC) = −iXC , we compute the impedance

of the tuning circuit with L, R and Cp:

Z1,(R−L) = R + iXL, Z2,(Cp) = −iXCp (5.3)
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Ztuning =
Z1Z2

Z1 + Z2

=
RX2

Cp

R2 + (XL −XCp)
2
− i

R2XCp +XLXCp(XL −XCp)

R2 + (XL −XCp)
2

(5.4)

Plugging in the impedances, we find:

Ztuning =
R

(RωCp)2 + (ω2LCp − 1)2
− iω L− ω2L2Cp −R2Cp

(RωCp)2 + (ω2LCp − 1)2
(5.5)

From here, we must apply two conditions:

1. Impose that the total impedance Ztot = Ztuning + ZCs has no imaginary component

by requiring that the impedance of the series capacitor is equal and opposite to the

imaginary part of Ztot: Im(Zp) = −XCs = 1/(ωCs). This gives a value for Cs

2. Impose that the total impedance is 50 Ohms → Set the real part of Ztot to 50 and

solve for the zeros of the resulting quadratic equation. This gives a value for Cp

Plugging these equations into Matlab, we find that for a 0.4 µH inductance coil with an

estimated resistance of R = 0.5Ω, we need: Cp =26 pF and Cs =2.8 pF. In practice we must

use variable capacitors so we can tune the frequency of the coil with Cp and match to 50Ω by

tuning Cs. We used two trimmer capacitors from Knowles electronics tunable from 0.6-12

pF range, one as Cs and the other in parallel with a 22 pF capacitor (also manufactured

by Knowles) so the tunable range was 22.6-32 pF. All three capacitors were lead-free and

non-magnetic so that their effect on the magnetic field measurement was minimized. This

circuit was grounded to the copper shield placed around the 3He probe as indicated in Figure

5.7.

Once the circuit was built, we used an Agilent network analyzer (model E5061 B ENA

series) to tune the coil to 47.01 +/- 0.01 MHz, with impedance of 50+/-2 Ω using the tuning

function on each capacitor.
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5.2 NMR Studies with UW Electronics

5.2.1 UW NMR Electronics

All initial NMR studies were conducted using electronics from University of Washington

designed for proton based NMR probes. We switched out a 61 MHz bandpass filter used for

proton NMR and replaced it with a filter at 47 MHz (mini-circuits BPF-B48+) to make the

electronics usable for 3He. The UW electronics consisted of two boxes, a NIM box and a

multiplexer, with the following functionality (also diagrammed in Figure 5.8):

• the NIM box:

1. creates the NMR output pulse using a reference and sends it to the multiplexer

based on an input trigger signal, and

2. digitizes the incoming FID signal from the multiplexer after mixing it down with

the reference frequency

• the multiplexer:

1. selects the probe channel (The device is capable of switching between multiple

channels and can be used to control multiple NMR probes. For the purposes of

this work, only one channel was needed for the 3He probe),

2. sends the output NMR pulse from the NIM box to the probe, and

3. reads the incoming signal from the probe and sends it to the NIM box

We used the UW electronics in conjunction with two function generators and an oscilloscope.

One function generator (SRS DS345) was used to send a TTL pulse to the NIM box to trigger

the NMR pulse and controlled the timing so the NMR pulses were gated at 1.037 Hz. Another

function generator, the local oscillator, (SRS SG382) set at 47.0141 MHz was used as the

reference for the NIM box which created the NMR pulse at this frequency. The width of

this pulse was controlled with a knob on the NIM box, tunable between 2-15 µs.
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The NMR coil in the 3He probe was connected to a channel on the multiplexer, and the

incoming signal was sent to the NIM box, which mixed it down with the reference frequency

and digitized it. The NIM box was connected to an oscilloscope (Tetronix MDO3024) which

read the digitized signal using the TTL pulse function generator for triggering. We were

able to detect the very first NMR signals with 3He at high field with this setup (Figure

5.8). However, there were two issues that had to be resolved before a signal was detected.

The first was that the pulse widths achievable with the UW electronics corresponded to a

maximum of 3.7◦ pulse angle (measurement described below), and the second was that the

noise was larger than the signal size. We addressed both of these issues by averaging over

many pulses on the oscilloscope, so that the NMR pulse angles added up to a larger angle,

and the random noise averaged to 0. Additionally, in order to prevent dephasing of the

nuclei precession from one pulse to the next, the LO frequency used was only a few hundred

Hz away from the 3He NMR frequency (LO = 47.0141 MHz). This led to the first successful

detection of the NMR signal at 1.45 T.

Once the signal was detected, we improved the setup by using a LabVIEW program in

conjunction with a National Instruments X-series 6363 Data Acquisition (DAQ) box. This

eliminated the use of the TTL pulse function generator, as the LabVIEW program could

create TTL pulses with more control over timing - the program can send a predetermined

Figure 5.8: UW NMR electronics diagram.
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Figure 5.9: Averaged FID signal on oscilloscope measured with UW electronics.

number of pulses t seconds apart. All data shown in this section was recorded with an

oscilloscope as shown in Figure 5.9 and transferred to a computer using a flash drive. See

Appendix A for a discussion of the fit model used to extract the frequency, amplitude, and

T ∗2 of the FIDs.

5.2.2 NMR Data and Studies

All data collected with the UW electronics utilized the following settings:

• reference frequency: 47.0141 MHz

• pulse width: 15 µs

• number of pulses: 16

• time between pulses: 0.96 sec

• saddle coil tuned to 47.01 +/- 0.01 MHz, 50 +/ 0.4 Ω impedance

MEOP settings:

• discharge at 6 MHz,

• laser absorption line: f−2 or f−4 for various studies

• laser power: 2 W

59



• gas polarized for 2-5 min

The goal of the first few studies was to find optimal parameters to maximize the sig-

nal size and stability. These included using different absorption lines for MEOP, changing

sample cells to study gas pressure dependence, measuring the T1 relaxation time (explained

in Section 3.3) with different pressure cells, varying the polarization time, and varying the

amplitude of the NMR pulse.

A study reported in reference [40] showed that different absorption lines of the 3He gas

spectrum can yield higher or lower polarizations via MEOP. We measured the NMR signal

for both absoprtion lines and found that the f−4 line produced a signal amplitude higher by

a factor of two than f−2 as shown in Figure 5.10, indicating higher polarization of the gas.

This study was conducted with the 2 Torr cell and the results were consistent with [40].

We then studied the pressure dependence of the signal by changing the cell used in

the magnetometer. Cells with gas pressures of 2, 10, and 40 Torr were used (see Figure

5.11), where these labels are based on the nominal pressure when filling the cells at room

temperature and correspond to approximately 3.5 x 1022 3He/m3 with uncertainty of ∼ 1

Torr. We found that while the signal size increased with increasing pressure by a factor of

4, the transverse relaxation time T ∗2 decreased by a factor of ∼5 for the 2 and 10 Torr cells,

respectively. The 10 and 40 Torr cells did not display this varying behavior. The change

(a) FID Signal after polarization at f−4 . (b) FID Signal after polarization at f−2 .

Figure 5.10: FID amplitude study for different laser absorption lines.
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in the signal size between the 2 and 10 Torr cells was expected since the higher density of

nuclei in the higher pressure cells produce a larger precession signal. However, we did not

see this between 10 and 40 T cells. Since the signal size is proportional to both density and

polarization in the gas, the study indicated that the achieved polarization in the 40 T cell

may have been lower due to the weaker hyperfine coupling, producing a signal amplitude

similar to the 10 Torr cell despite the higher density.

Additionally, the shorter T ∗2 at higher pressure was also expected. In the motional nar-

rowing regime, T ∗2 has an inversely proportional relationship with the diffusion constant D

of the gas, which is inversely proportional to the sample number density. As explained in

section 3.3, dephasing can occur because of gradients, but the effect is reduced by diffusion

since the atoms with different initial positions average nearly the same field distributions.

As the pressure increases, this averaging is less effective [44], [45], leading to a decreased T ∗2 :

1

T ∗2
=

4γ2R2

175D
(~∇B2

x + ~∇B2
y + 2~∇B2

z ) =
1

2T1
+

8γ2R2

175D
(~∇B2

z ) (5.6)

Note that the scale of T ∗2 was much shorter (10s of milliseconds) than what was seen

at Michigan (300 ms). This indicated that additional gradients were present in the setup

since the homogeneity of the Argonne magnet was much better than the Helmholtz coils at

Michigan. We were able to make some changes and improve T ∗2 months later after the Umich

NMR electronics were implemented (see Section 5.3). Specifically we found a magnetic cable

in the setup and upon its removal observed T ∗2 increase to >3 seconds for the 2 Torr cell.

Next, we conducted studies of the T1 time, or the time it takes for the longitudinal

polarization in the sample to decay once the sample is polarized via MEOP. T1 also depends

on the diffusion constant and field gradients as discussed in section 3.3:

1

T1
=

8γ2R2

175D
[~∇B2

x + ~∇B2
y ] (5.7)

Note that T1 plays a different role in proton NMR with water samples than in 3He. In water,
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(a) 2 Torr Cell (b) 10 Torr Cell

(c) 40 Torr Cell

Figure 5.11: Pressure dependence study. Note that the vertical scales are different.

T1 is a measure of the time it takes for the sample to recover equilibrium polarization Pz after

the NMR pulse has rotated it, while in 3He the polarization decays almost completely (to

small nonzero equilibrium value given by Boltzmann distribution) after time T1 without the

presence of a mechanism to repolarize the sample (such as MEOP). With the UW electronics,

we were able to place some limits on the length of T1 for different gas pressures of 3He: in

the 2 Torr cell, T1 > 12 min, and in the 10 and 40 Torr cells, T1 > 30 min. The last two

studies combined suggested that the 10 Torr cell may be the best candidate for the 3He

magnetometer since the polarization signal lasted a long time while the short T ∗2 did not

limit data collection.

Another study for signal optimization was to check how long MEOP needed to be per-

formed so the gas polarization was sufficient to produce an NMR signal with a high SNR.

We found that about 4 to 5 minutes of polarization time was necessary for the 2 Torr cell,
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while only 2 minutes were required for the higher pressure cells. This was in agreement with

the prediction as the higher pressures yield a higher collision rate for MEOP and hence the

gas is polarized faster.

Next, we attempted to vary the pulse width and power but were limited by the UW

electronics. The pulse width had an upper limit of 15 µs and increasing the amplitude of

the pulse did not increase the amplitude B1 field produced by the NMR coil. The B1 field

amplitude was measured by picking up the field as induced voltage on a 5-turn, 2-cm test

coil placed within the NMR saddle coil. Using Faraday’s law of induction for the voltage of

the second coil Vpk−pk, we estimated the field Bcoil−1 produced by the first coil (NMR saddle

coil):

εpk =
Vpk−pk

2
=
Nπr2Bcoil−1(2πf)

2
(5.8)

where N and r are the number of turns and radius of the second coil and f = 47MHz is the

driving frequency. BNMR−coil was found to be ∼10 µT. Using the equation for pulse time

from section 3.3 (t = θ/(γB1), we found that a 15 µs long pulse corresponded to a maximum

angle θ of 3.7◦ rotation of the 3He magnetization. This study indicated that longer pulses

with more power were needed.

Additionally, we used two test coils to estimate the field produced by the gas magneti-

zation. We first drove one circular coil (3 turns) with a function generator at 47.02 MHz

and 0.1 V peak-to-peak voltage. This was picked up as 40 mV pk-pk by a second test coil,

circular with 2-cm radius and 5 turns. Plugging these into equation 5.8 yielded a field of

∼0.1 mG produced by the test coil. Next, we conducted the same test using the saddle coil

as the secondary coil and found the voltage picked up and amplified by the UW electronics:

Vpk−pk =2 V. Hence, a 2 V pk-pk signal picked up by the saddle coil and the UW electronics

was consistent with a 0.1 mG field. Applying this ratio to the 3He FID amplitude, ∼8 mV,

we estimated that the field produced by the precessing nuclei of the gas was 0.4 µG.

Besides the signal size, T1, T
∗
2 , and pulse width, power studies and produced field studies,

we performed two other tests with the UW electronics. We checked that the extracted
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frequency changed accordingly when the reference frequency was increased or decreased to

confirm signal validity, just as was done for low field NMR at Michigan. We changed the

reference frequency by a few Hz (10s of ppb), and saw the reference frequency shift as

expected. Lastly, we performed some stability studies in which a few different measurements

were taken without moving the setup. We found that the frequency shifted by about 3 Hz for

different measurements, which was within the ∼3 Hz uncertainty from the FID fits. These

measurements were hence consistent to 64 ppb.

5.3 NMR Studies with Umich Electronics

Due to the limitations of the UW NMR system for the 3He probe, we designed a more

versatile system that could be optimized for these studies. The important features were:

• High power, coupling to the 10 W pulse amplifier (TOMCO RF Amplifier),

• Optimized component selection to handle pulse power, width, and gating (timing),

• Longer pulse capability,

• Modular components,

• High precision timing, sync to Rb clock, and

• Noise reduction.

5.3.1 Umich NMR Pulse Controller

The electronics diagram is shown in Figure 5.12, including the Umich NMR Pulse Controller

electronics in the dashed box. These consisted of two mini-circuits switches, a bandpass filter

at 48 MHz to select the nominal 3He frequency, an amplifier, a mixer, and a circuit board for

converting TTL pulses to -8V to control the switches. The pulse controller box was connected

to a power supply, a function generator to provide the local oscillator reference frequency

64



(SRS SG382), a high power RF amplifier (Tomco BT00250-Gamma) to produce powerful

NMR pulses, a preamplifier (SRS SR560) to eliminate noise, and the saddle coil which

behaved as the NMR pulse producer and signal receiver. Additionally, the pulse controller

electronics were connected to a data acquisition system (NI X-Series 6363) controlled with

LabVIEW, which determined the timing of the switches, controlled the length and number

of NMR pulses, and digitized the FID signal.

The NMR pulse was generated through the following path: the local oscillator (LO)

sent an RF wave at 47.014 MHZ and 120 mV peak-to-peak amplitude to the TOMCO for

amplification. The TOMCO was connected to the Umich pulse controller which sent this

NMR pulse to the 3He probe. The TOMCO amplifier output could be turned on and off to

produce a pulse of variable length. We studied the output to our coil and determined that

the pulse width could be controlled with a resolution of 0.5 µs, with a minimum pulse width

of 2 µs. The timing of the pulse shown in Figure 5.13 was determined by three outputs from

the X-series box controlled by LabVIEW:

• the preamp gate (mini-circuits ZSFWHA-1-20+) was switched off for 100 µs,

• after a 2 µs delay, the probe switch (ZFSWA-2-46) connected the probe to the TOMCO

for 64 µs (This SPDT switch normally connected the probe to the signal channel; for

the pulse, the probe was switched to the RF pulse channel for 64 s),

• after a 24 µs delay, the Tomco was turned on for 40 µs.

This last duration of the Tomco control determined the length of the NMR pulse created,

nominally 40 µs for 3He. After the pulse, the SPDT switch connected the probe (NMR coil)

to the signal channel consisting of a bandpass filter (mini-circuits BPF-B48+), an amplifier

(mini-circuits ZFL-500LNB+), and a mixer (mini-circuits ZX05-1L-S+) which mixed the

signal frequency with the reference (LO) frequency. Typical IF frequencies - the difference of

the LO and 3He precession frequencies - were between 200-600 Hz. The mixed down signal

was then filtered with a preamplifier (SRS SR560), which included a 12 dB low pass filter
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Figure 5.12: Electronics diagram for high field NMR including Umich Pulse Controller
(dashed box).

Figure 5.13: Umich NMR Pulse Controller timing diagram.
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at 1 kHz to reduce noise. The preamp gain was set to 100 for further amplification of the

signal, at which point the signal was input into an analog channel on the NI DAQ box and

recorded with the LabVIEW program.

For each set of data, the number of pulses sent as well as the time between the pulses

were controlled with the LabVIEW program which used an external clock for timing. The

data rate (2-10 kHz) was determined by an external function generator (SRS DS345) which

was connected to the NI DAQ clock input, and synced to the Rb clock (SRS SG382-Option

4). The LO function generator was also synced to this clock so the timing of all components

used the same Rb-based reference (Stability < 0.1 ppb, Aging <1 ppb/year). The data rate

for 3He was set to 2 kHz and we collected 4000 samples over a period of 2 seconds for each

pulse. Most datasets consisted of 5 total pulses so that the extracted frequency was averaged

from 5 FID shots.

In addition to producing longer NMR pulses, the Umich pulse controller also generated

higher power pulses than the UW electronics. To make this comparison we picked up the

pulse field produced by the NMR saddle coil as an induction voltage on a circular coil (2 cm

radius, 5 turns). When the pulse coil was driven with the UW electronics at 47.014 MHz and

an input peak to peak voltage of 20 mV, the voltage picked up by circular coil was 4 V pk-pk.

As described in the previous section, this voltage value saturated at 8 V pk-pk as the input

voltage was increased so more powerful pulses could not be produced with the UW system.

Figure 5.14: Induced voltage on a pick up coil due to field created by the saddle coil and
Umich NMR pulse controller as a function of input voltage.
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Driving the same saddle coil with the Umich NMR electronics (including amplification of

the pulse with the TOMCO), the picked up voltage increased linearly with the input voltage

as shown in Figure 5.14. While the produced pulse power also saturated with increasing

voltage, we were able to produce pulses yielding a 20 V pk-pk pick up amplitude. This more

powerful and longer duration pulse capability allowed for pulse angles in the entire range of

2-90◦, as compared to the UW electronics which produced a maximum 3.7◦ angle.

The longer and more powerful pulses and noise removal with the Umich NMR system

(Figure 5.12) were big improvements over the UW electronics and produced one shot FIDs

eliminating the need to average over many (∼16) pulses. Another improvement made in

the apparatus at the same time as the Umich system installation was the switch from the

aluminum box to copper as described in section 5.1.4. This shield accomplished both: re-

duced leakage of RF radiation from the discharge coils as well as the NMR saddle coil as

required by Argonne safety, and also provided shielding from electrical noise for the NMR

electronics. The last change made after implementation of the Umich NMR system was the

replacement of a mini-coax style cable connecting the NMR coil circuit (Figure 5.7) to the

pulse controller. We found this cable to be slightly magnetic and upon replacing it with

(a) FID and fit with UW electronics av-
eraged over 16 pulses.

(b) FID and fit with Umich electronics aver-
aged over 5 pulses.

Figure 5.15: High Field FID with (a) UW and (b) Umich electronics. Note that the data in
(b) were taken after the switch to a copper shield and replacement of the magnetic cable.
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another mini-coax SMA cable constructed without the use of nickel [54], the T ∗2 of the signal

increased from the 3-20 ms range with the UW electronics to >1 second with the Umich

system as shown in Figure 5.15.

5.3.2 NMR Studies

We conducted several studies with the Umich NMR pulse controller and electronics. The

first was to check the stability of the clock. For this we used a function generator (SRS

SG382) as the probe input to the pulse controller, and set at a frequency 100 Hz away from

the reference. Both function generators, the reference LO and the input probe, were synced

with the Rb clock function generator which also controlled the DAQ timing. A total of 200

measurements were taken over a period of 1000 minutes (1 measurement every 5 minutes)

and a spread of ∼0.009 Hz was seen as shown in Figure 5.16.

Next, we checked the stability of the 3He FID signal frequency over both long and short

periods of time. Figure 5.17 shows data taken two days apart with extracted frequencies

plotted as a function of the NMR pulse number. The spread is about 0.2 Hz over 20 min

and up to 0.5 Hz over the two day period, indicating that the frequency drifted by 11 ppb.

The next day we performed a few short time-scale studies each with 15 measurements taken

over a period of 22 minutes, consisting of 3 sets of 5 pulses, with the pulses fired 1 min apart

Figure 5.16: Set of 200 frequency measurements to check clock stability. The error bars are
determined from the standard deviation of the measurements.
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and the 3 sets separated by 5 min each. These data sets are shown in Figure 5.18, from

which it is clear that the spread in each set of 5 pulses is much smaller (sub-ppb level) than

the spread over the longer 22 min period. This indicated that the frequency drift was not

due to the NMR electronics or the 3He probe, but rather due to the magnetic field drift. A

similar magnet drift had previously been measured by the Argonne group.

Figure 5.17: Frequency stability data for two different days. The error bars are determined
from 68% confidence interval of the extracted frequencies from the Matlab fit.

Figure 5.18: Frequency stability data for short and long timescales. The error bars are
determined from 68% confidence interval of the extracted frequencies from the Matlab fit.
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At the end of the day, we conducted another long timescale study by taking data overnight

for a 5-hr period as shown in Figure 5.18. These four sets of data demonstrate that the

magnet drifted by about 15 ppb/hr over long timescales, while the frequency extraction

with the Umich NMR system was stable to 0.2 Hz (4 ppb) for short time-scales (5 minutes

or less). Note that the extracted frequencies in Figures 5.17 and 5.18 are 200 Hz apart

because the local oscillator frequency was changed between measurements.

We repeated the T ∗2 relaxation time studies with the Umich system which had previously

been conducted with the UW electronics. Figure 5.19 shows FIDs from the 2 and 10 Torr

cells, where the lower pressure cell had a much longer T∗2 (∼3 sec vs. ∼1.25 sec) as expected.

The amplitude of the 10 Torr cell was about 5 times that of the 2 Torr cell FID (∼50 mV

vs. ∼10 mV peak-to-peak) consistent with studies with the UW system and expectation.

If we assume that both cells had similar polarization levels, the higher amplitude would be

expected due to the 5 times higher density (pressure) of the 10 Torr cell. While we did not

actively measure the polarization before performing NMR and the 2 Torr cell was polarized

for a longer period of time (5 min) than the 10 Torr cell (2.5 min) in order to attain the

FIDs, the results of this study suggest that similar polarization levels were achieved in each

cell despite the different times of polarization.

(a) FID from 2 Torr cell (b) FID from 10 Torr cell

Figure 5.19: Pressure dependent study of FID signal with Umich pulse controller. Note that
these studies were performed with the same electronic gain settings and the two plots have
different x- and y-scales. The digital noise in (a) is due to the ∼1 mV resolution of the data
acquisition system.
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(a) Signal amplitude vs. time for 2 T cell (b) Signal amplitude vs. time 10 T cell

Figure 5.20: Amplitude decay study for 2 and 10 Torr cells. The error bars are determined
from 68% confidence interval of the amplitude value from the Matlab fit. Note that the decay
does not follow the model due to additional time waited between each set of 5 measurements,
i.e. the T1 decay is on a longer time scale than decay due to each pulse.

Another study of interest was determining how many datasets were possible after hyper-

polarization of the gas with MEOP was performed for each cell. We conducted multiple sets

of NMR measurements until the polarization diminished, which was due to a combination

of the amount of initial polarization in each cell and T1 longitudinal relaxation time. We

found through this test that the 2 Torr cell signal amplitude, and hence the polarization,

disappeared after 2 sets of 5 pulses were sent over a period of 6.5 minutes, while the 10 Torr

cell signal lasted for 24 min for 4 sets of 5 pulses, as shown in Figure 5.20. This indicated

that the 10 Torr cell would be more useful for further studies and the cross-calibration of

the BNL probe since it could be polarized in half the time than the 2 Torr cell and 4 times

more data could be taken without needing to polarize again.

The data from Figure 5.20b were analyzed to determine the size of the NMR pulse angle.

Since the initial magnetization M0 reduces by cos(θ) after each pulse, the magnetization

after the first pulse is given by:

Mz = M0cos(θ) (5.9)
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Using this iteratively, we find that the magnetization after the kth pulse should be:

Mz(k) = M0[cos(θ)]
k (5.10)

As the magnetization is directly proportional to signal amplitude, we fit the amplitudes

from each set of 5 pulses to the function abk, where k is the pulse number, and b is the

fit parameter equivalent to cos(θ). We found that a 40 µs pulse length amplified with the

Tomco was equivalent to a pulse with a 23◦ angle.

For completeness, we conducted a more detailed study of the 10 Torr cell longitudinal

relaxation time T1. In order to measure the true T1, we reduced the pulse angle to ∼8◦ and

also separated the pulses over time. A total of 15 pulses were fired over a 5 hour period

and the amplitudes, corrected for the pulse angle by dividing each nth amplitude value by

cos(θ)n, were fit to an exponential decay as a function of time (α e−t/T1). The data and fit

shown in Figure 5.21 yielded a T1 of 135 minutes.

Lastly, we studied the effect of rotating the cell stem with respect to the direction of the

field axis. We found that the signal frequency shifted and there was also an impact on T ∗2 .

Since this measurement required removing the setup from the magnet, rotating the cell by

Figure 5.21: Amplitude decay of FID signal, corrected for NMR pulse angle 8◦, as a function
of time. Extracted T1 = 134 min. The error bars are determined from 68% confidence
interval of the amplitude value from the Matlab fit.
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hand, and inserting the probe back into the magnet, a precise frequency shift could not be

measured as the movement of the probe also caused frequency shifts. However, we repeated

this study after implementing a method to place the probe repeatably back in the same

position in the magnet. The details of this study are given in the next chapter.

5.4 Umich Electronics for Proton NMR

In order to cross-calibrate the BNL probe with the 3He probe, we also built an NMR pulse

controller for protons. The electronics were identical to the 3He electronics described in the

previous section, except for the bandpass filter used was appropriate for 61 MHz for proton

NMR. The same local oscillator was used at a different frequency, 61.7154 MHz, and the

pulse reference signal was amplified with the same Tomco amplifier by switching cables by

hand.

The NMR coil used was built in to the BNL water probe - 1 cm long with 5.5 turn coil

and 15 mm diameter as described in [55]. The detected signal was amplified using a separate

preamplifier (same model) than the 3He probe. The pulse timing and lengths were also

different. While the same timing diagram as 3He was used to control the electronic switches,

the NMR pulse length was much shorter: 15 µs. A second SRS DS345 function generator

also referenced the Rb clock to set the 10 kHz data rate. A total of 5000 samples were read

for each pulse with an acquisition time of 0.5 sec. For each data set, we averaged over 5 pulses

with 6 s of wait time between pulses so the rotated polarization could be recovered in between

pulses. (Recall that T1 for protons is the time it takes the magnetization of the sample to

return to its equilibrium value after the first NMR pulse has rotated it. We measured this

T1 time to be 6 seconds and waited for equilibrium before firing each consecutive pulse.)
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Chapter 6

Absolute Measurement and

Cross-calibration

6.1 Methods

Each BNL probe, cylindrical and spherical, was cross-calibrated with the 3He probe in the

Argonne magnet field of 1.45 T. We designed a 3D printed mount, as described in section

6.1.1 below, to hold both probes for calibration purposes. Section 6.1.2 details the use of

magnetic field gradients to position the two probes in the same location in the magnet and

to minimize the inhomogeneity of the field. The cross-calibration campaign is described in

section 6.1.3 and then the corrections for each probe are detailed. Lastly we give the final

numbers with uncertainties for the absolute calibration cross-check for each probe.

6.1.1 Mounting Both Probes

In order to perform the cross-calibration efficiently, we designed a holder, 3D printed with

Acrylonitrile Butadiene Styrene (ABS) plastic, in which both probes, BNL and 3He, could

be mounted simultaneously. This not only decreased the time between measurements with

each probe minimizing field drift effects, but also eliminated errors that would be caused by
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Figure 6.1: The 3D printed holder (ivory) is mounted onto the 1D stage. Both the 3He and
BNL probes are fixed inside the holder with screws (circled). The x, y, and z directions are
also indicated, with the magnetic field along the z-axis.

un-mounting and remounting of the probes, such as changes in position or material effects.

The holder sat on a PVC plastic diving board-shaped plate mounted on two PVC cylinders

screwed on a 1D aluminum stage. The stage could travel into and out of the Argonne magnet

along the magnetic field axis (z-axis) controlled by a motor. The holder was designed with

slots into which each probe could be inserted, with some room for adjustment in the x and

y directions. Here, y axis is along the vertical and x axis is horizontal and orthogonal to the

magnetic field axis (z-axis). Figure 6.1 shows the holder mounted on the stage with both

probes inserted and indicates the x, y, and z axes orientations.

The BNL probe slid into the mount with its axis along the x-direction, and both the x
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and y positions of the probe could be adjusted with 4 nylotron screws, 2 on top (circled in

the figure) and 2 on bottom. There was ∼6 cm of adjustment room in the x-direction, and

about ∼2 cm room in y. The 3He probe sat in the holder with its axis, the optical pumping

beam axis, in the z-direction along the magnetic field. There was about 1 cm allowance for

positioning the probe in the x-direction using nylotron screws mounted on either side of the

holder. The y-position of the 3He probe could be adjusted by about 2 cm, in increments of

0.2 cm using 3D printed (PLA plastic) shims which sit either between the probe and holder

or between the holder and the diving board.

Once the center of the active volumes of the two probes, i.e. the areas of the samples

accessible by the NMR coil, were aligned in x and y by using the adjustment screws and

shims, the only free movement allowed was in the z-axis, controlled with the 1D stage. The

stage could be translated along z to place the ”center of magnetic sensitivity” of the two

probes at the same position in x, y, and z, and therefore , in the absence of drifts, at the

same magnetic field and gradient. This placement of each probe was determined using the

∆B = 0 method.

6.1.2 Delta B Method

The cross-calibration effort required that both probes measured the same field in the same

location of the magnet. This was challenging because the probe frequencies could not be

compared to each other to verify that they measure the same field for two reasons: 1. Each

probe measures an NMR frequency shifted from the actual value due to shielding effects

from the materials surrounding the water or 3He sample, and 2. Each measured frequency

is multiplied by a different proportionality factor to calculate the magnetic field since the

gyromagnetic ratios for water and 3He are different. Additionally, measuring the field at the

same location with each probe required attention as spatial gradients in the magnet had been

previously measured to be ∼ 5 ppb/mm by the Argonne group. Since the goal of this work

was to cross-calibrate with less than 30 ppb uncertainty, the probes needed to be positioned
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repeatably at the same location to sub-mm precision with minimal gradients present using

a method independent of shifts caused by material effects and the different gyromagnetic

ratios. This goal was achieved with the ∆B = 0 method.

The method utilized the active shim coils of the magnet, which are capable of producing

a known spatial linear gradient along each axis. The produced gradient could be controlled

remotely with a computer program by changing the current in the shim coils, which were

shown to be stable for ∼few hours and produced gradients repeatable to ∼0.02 A, as mea-

sured by the Argonne group. The ∆B = 0 method was performed using the gradients

through the following steps (for simplicity we only outline the procedure for the z-axis, but

it is applicable to x and y axes as well):

• Apply a linear gradient using a current value (I1 = 0.25 Amps) in shim coil for the

z-direction

• scan the z-axis of the magnet with a probe (3He or BNL) taking multiple field mea-

surements at different z-locations while keeping the x- and y- positions unchanged

• Apply the opposite gradient (or any different gradient) with shim coil current (I2 =

−0.25 Amps) along the z-axis

• Conduct the same scan in z-axis using the same probe

• Plot each frequency scan as a function of position, fit each to a line, and find the unique

point where the two lines cross

This point at which

∆B = B(I1)−B(I2) = 0 (6.1)

as measured by a probe is a unique location in the magnet. By finding this ∆B = 0 point

with each probe in the z-direction, we were able to place the probes in the same location in

z. For the z-scan, the probes were mounted on a motorized stage, and the position of the

stage was controlled by a rotary motor. The position of the motor/stage was recorded in
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bits as it was moved from point to point. A sample scan with the 3He probe conducted for

three currents in the z-direction, 0.25 A, -0.25 A, and 0 A, is shown in Figure 6.2. The point

of intersection given by ∆B = 0 indicates that the active volume of the probe is positioned

uniquely in the magnet.

This process could be repeated for x- and y- axes. Since the stage used for the cross-

calibration only moved in the z direction, the x and y movements had to be conducted by

hand. For example, for the 3He probe, we measured a ∆B value with two y-axis gradients at

one position, and if the value was non-zero, we moved the probe up or down. We repeated

this procedure until ∆B = 0 was measured with an uncertainty of less than +/- 0.5 Hz. This

program was repeated for the x-axis for 3He and then for both x and y for the BNL probe.

The advantage of using this method is that if the probe materials produce a gradient that

is proportional to the field at the ppm level, both B(I1) and B(I2) also get shifted by this

gradient, but taking the difference of the two frequencies for the two current values cancels

out this shift. If we had not used this method, we would have to address this complication

even though it is small because the material susceptibilities are on the ppm level. Lastly, the

reason ∆B = 0 is so powerful is that it gives the additional benefit that we need not worry

about the different gyromagnetic ratios of the two samples used, water and 3He, because

when the frequency difference is 0, the magnetic field difference is also 0 independent of the

gyromagnetic ratio:

ω = γB → ∆w = γ∆B

∆ω = 0→ ∆B = 0

(6.2)

After employing the ∆B = 0 method to position each probe uniquely in the magnet,

aligning the active volumes of both 3He and BNL, we checked that each probe came back

to the same position when the stage was moved into and out of the magnet. The position

repeatability of the stage was good to sub-mm resolution, as indicated by several back and

forth scans along the z-direction with the 3He probe (Figures 6.3a and 6.3b), which gives
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Figure 6.2: Scans of 3He probe along z-axis with the z-gradient set to three current values.
The point of intersection is where ∆B = 0, indicating that the probe active volume is
uniquely positioned in the magnet.

an uncertainty of less than 5 ppb on the frequency measurements. The method was used to

check both probe positions throughout the cross-calibration effort.

(a) Frequency vs. position in z-axis measured
with 3He

(b) Zoomed in frequency vs. position

Figure 6.3: Position repeatability along z-axis
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6.1.3 Cross-calibration Campaign

Before conducting the cross-calibration, we improved the homogeneity of the field around

the ∆B = 0 point using the shim coil gradients in all three directions. We also imposed a

blinding scheme to offset the 3He probe frequency from the true measured value throughout

the calibration effort to remove bias. We then measured the frequency with each probe using

what we call the A-B-A scheme.

As seen in Fig. 6.2, setting the z gradient to 0 Amps, does not produce a horizontal line,

indicating that the field changes along the axis. This gradient (∼0.25 Hz/mm) was previously

measured by the Argonne group and was present in the magnet despite the passive shims.

We used the active shims to reduce this gradient by applying a negative gradient based on

the slope of the line which fits the 0 Amp-current data plotted in blue circles in Figure 6.4.

We applied the correcting current to the active coils (-0.08 Amps) and took another scan

to check the homogeneity, data plotted as red plus signs. The x- and y- gradients were not

measured for this cross-calibration (see section 6.7). We instead used the values: 0 Amps

for x-axis and 0.25 Amps for y-axis based on rough gradient measurements performed with

a UW NMR probe. These currents were used throughout the cross-calibration to minimize

gradients around the probe active volumes.

Before the cross-calibration was performed, we blinded the 3He extracted frequency in

Figure 6.4: Caption
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order to ensure that we cross-check the two probes without bias. A random number between

+/−15 Hz was generated using Matlab and saved as a binary file hidden from the user. This

file was called each time the LabVIEW program was run and the blind was added to the

extracted 3He frequency. Hence the resulting frequency displayed by the program was:

fdisp = fextracted + fblind (6.3)

The BNL probe frequency remained unblinded as the cross-calibration was relative.

The cross-calibration of the 3He probe with the cylindrical BNL probe was conducted

over a 5 hour period using a series of three measurement sets alternating 3He and BNL

probes by translating along the z-axis (magnet axis). We called this measurement scheme

A-B-A, which consisted of the following steps:

1. Move 3He probe to measurement position,

2. Use ∆B = 0 to verify position in x, y, and z,

3. Acquire 5 3He FIDs 2 seconds apart and record average frequency (A),

4. Move the stage in z to place BNL probe in measurement position,

5. Confirm position with ∆B = 0 for all three axes,

6. Acquire five BNL FIDs 6 seconds apart (B),

7. Move the stage to position 3He probe in measurement position,

8. Acquire five 3He FIDs 2 seconds apart and record average frequency (A), and finally

9. Confirm position with ∆B = 0 for all three axes.

The additional ∆B = 0 measurements were performed to ensure that the probes were

coming back to the same location. For 3He, since the NMR pulse angle was much smaller than

π/2, it was possible to pulse several times without having to repolarize via MEOP. Recall
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from Chapters 3 and 5 that we must use a small angle pulse since there is no polarization

present in 3He at equilibrium so a true π/2 pulse would destroy the polarization in the sample.

For water, the pulses were 6 seconds apart (> T1) to allow the polarization to fully recover

to equilibrium after the π/2 pulse rotated it into the transverse plane. All (unblinded) data

for both the cylindrical and spherical BNL probe cross-calibration campaigns with 3He are

tabulated in Appendix A, while the final results averaged over all data sets after making

corrections are provided in this Chapter.

6.2 Corrections Overview

As explained in Chapter 3, the precession frequency of the sample gas or water is measured

with pulsed NMR, which yields the magnetic field:

ω = γ3,pB0, (6.4)

where the subscripts 3 and p denote 3He and protons, respectively. Ideally the NMR mea-

surements for the two samples should be performed in the same magnetic field B0. This is

not the case in practice due to a number of effects:

• position in the magnet

• drift of the magnetic field

• shielding of the magnetic field due to materials surrounding the sample and the bulk

susceptibility/magnetization of the sample

• Resonant effects due to the precessing magnetization and the current induced in the

NMR coil (radiation damping)

Additionally the temperature-dependent diamagnetic shielding of the nuclear moments

in the 3He atoms and H2O molecules must be accounted for. Therefore we must make
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corrections to ω for both probes to find the absolute frequencies before they can be cross-

checked. Once the positions of the probes are aligned and the magnet drift is accounted for,

from Fei [55] the corrections for the water probe would be:

ωprobep = [1− σ(water, T )− δbulk − δmat − δother]ωfreep , (6.5)

while the corrections for 3He probe, different from the water probe, would be:

ωprobe3 = [1− σ(3He, T )− δmag−dep − δglass − δmat − δother]ωfree3 (6.6)

In both equations σ is the temperature-dependent diamagnetic shielding factor. Since neither

the protons in water nor the Helium-3 nuclei are free but instead surrounded by electrons

which shield the nucleus, the magnetic field seen by the protons and 3He nuclei is shifted.

This shift is corrected with σ, which is σ3 = 59.96743(10)x10−6 for 3He gas [56] and σp =

25.680(±2.5)x10−6 for protons in water at 25◦C [57].

The second term in equation 6.5, δbulk, corrects for the bulk magnetism of the sample. For

the BNL probes this effect arises for the cylindrical holder and is 0 for the spherical sample.

In the case of 3He, the magnetization dependent effect, δmag−dep, includes contributions from

the bulk magnetization of the sample and radiation damping of the NMR coil. We separate

the total material effects for 3He into δglass and δmat, which correct for the glass cell and all

other materials that make up the probe and surround the cell, respectively. δother are all

other corrections. Each of these corrections will be given in detail in the next two sections.

The approach to the cross-calibration is to make these corrections and find ωfree using

equations 6.5 and 6.6 for each probe, calculate the magnetic field measured by each using

equation 6.4 and then compare the two. However, due to the uncertainties on the gyro-

magnetic ratios discussed in Section 2.2.4 and the fact that the 3He gyromagnetic ratio is

known with respect to protons, we decided on an alternative method for the cross-check. As

explained above, σ converts the shielded proton or 3He nuclei frequency to the unshielded
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value. This is the value needed in equation 6.4 when using γ3,p for free protons and nuclei.

However, Flowers et al. [27] provide the ratio of the shielded water gyromagnetic ratio to the

shielded 3He nuclei gyromagnetic ratio, γ′p/γ
′
3, to 4.3 ppb as mentioned in Section 2.2.4. We

can therefore use this ratio to compare the two frequencies of the shielded protons and nuclei

without making the diamagnetic shielding correction (using σ) and cross-calibrate with more

precision.

The latter method is employed for the cross-calibration performed for this work, in which

we first make all the corrections except σ to find the shielded frequency of each probe, and

then use γ′p/γ
′
3 to compare them:

ωprobep = [1− δbulk − δmat − δother]ω′p (6.7)

ωprobe3 = [1− δmag−dep − δglass − δmat − δother]ω′3 (6.8)

ω′p =
γ′p
γ′3
ω′3 (6.9)

where the prime denotes shielded frequencies for protons in water and 3He gas, respectively.

6.3 BNL Corrections (Cylindrical Probe)

We first correct the BNL probe measured frequencies for the linear field drift of the magnet.

This is followed by corrections due to the bulk magnetism of the sample, the probe materials,

all other materials surrounding the probe, and a temperature correction.

6.3.1 Drift Correction for BNL Probe

Each cross-calibration data set [A-B-A] consisted of an average of 5 3He frequency mea-

surements at time t1, followed by an average of 5 BNL measurements at time t2, and then

another set of 5 frequency measurements with the 3He probe at time t3. The times between

t1, t2, and t3 were less than 15 minutes for each data set, which allowed for movement of each
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probe to the same location in the magnet and verification of this position with the ∆B = 0

method. While the field of the Argonne magnet was quite stable, a small linear drift had

previously been measured over time.

To correct for this drift, we plotted the BNL measurements as a function of time (t2) and

imposed a linear fit. The data and fit are shown in Figure 6.5a where the blue x’s indicate the

times t1 and t3 of the 3He measurements. The slope and intercept from the uncorrected BNL

measurements, 0.024 +/- 0.002 Hz/min and 61715832.08 +/- 0.34 Hz, respectively, are used

to compute BNL frequency values at times t1 and t3 when the 3He probe measurements were

made. These values shown in Figure 6.5b are effectively what the BNL probe would measure

if the BNL and 3He measurements were performed simultaneously. Using these corrected

values thus eliminates the effects of linear drift over the course of the cross-calibration −

about 5 hours. The error on this correction is σlin−drift = 0.34 Hz (5.5 ppb) given by:

σlin−drift =
1

N
[
N∑
i=1

σslope ∗ ti]2 + σ2
intercept (6.10)

where N is the number of BNL measurements, ti is the time of each measurement, and σslope

and σintercept are the errors on the extracted slope and intercept, respectively. Note that all

measurement and fit errors on the uncorrected BNL frequencies get propagated here to yield

the uncertainty on the corrected values.

6.3.2 BNL Bulk Correction

The bulk correction for the BNL probe accounts for the shape of the water sample holder

and has the form δbulk = (ε − 4π/3)χp, where χp = −0.720(2)x10−6 is the susceptibility of

water [58] [55]. The factor ε-4π/3 is a measure of the sphericity of the sample holder and

is ε = 2π for an infinite cylinder with its axis perpendicular to the field. This gives the

correction for the cylindrical BNL probe δbulk = −1508 ± 4.2 ppb. A cross-calibration of

the cylindrical and spherical BNL probes conducted by Fei et al. [55] listed an experimental
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(a) Frequency measurements with BNL probe as
a function of time.

(b) BNL probe frequencies corrected to 3He fre-
quency times

Figure 6.5: BNL probe measurements before and after linear drift correction. The blue x’s
mark the 3He measurement times. The error bars of 0.2 Hz (not shown in (b)) are from the
fit model dependence of the frequencies, as described in section 6.5.1.

uncertainty of 10 ppb on this correction based on their measurements with each probe.

However, we use the theoretical correction and uncertainty here to keep the cross-calibrations

of the two water probes with the 3He probe independent of one another since the experimental

uncertainty reported was dependent on both BNL probes. Additionally, χ has a small

temperature dependence ∼ 0.02 Hz (0.3 ppb) [59], [60], negligible for this work.

6.3.3 BNL Materials Correction

We make two materials corrections to the BNL measurement, one for the materials that

make up the probe itself, and another for all surrounding materials not part of the probe.

The probe materials correction is taken directly from Fei [55], the group that built the probe:

δprobe−mat = 47± 10 ppb. This includes perturbations from the copper NMR coil, the probe

case, and the glass container (cylindrical in this case). The group also found that rotation of

the probe about its axis caused frequency shifts due to the asymmetry of the probe materials.

This introduced an additional uncertainty of 20 ppb [55].

For materials surrounding the probe, i.e. the 3He probe and translation stage (platform),
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we employed another NMR probe constructed by the UW group for E989 and based on

protons in petroleum jelly. This probe was useful due to its small size (0.8 cm diameter and

10 cm cylinder length). Keeping the entire cross-calibration setup (probes holder on diving

board on 1D stage) unchanged, we first removed the BNL probe while keeping the 3He probe

mounted. We then moved the 1D stage to the position where measurements with BNL were

made. Next, the UW NMR probe, mounted vertically on a motorized stage movable in all 3

dimensions, was moved to the location where the BNL probe sat during the cross-calibration,

as shown in Figure 6.6. We checked that the active volume of the NMR probe was in the

same position as the BNL active volume by using the ∆B=0 method in all three directions.

Once the position was confirmed, a measurement of the field value with the optimal currents

described in section 6.1.2 was taken.

The 1D stage was then moved out and the field of the magnet was measured with the

UW NMR probe in the same position as the measurement with the 1D stage (as verified by

∆B=0 again). The difference between the frequency of the NMR probe placed in the BNL

position in the cross-calibration setup and the frequency of the NMR probe in the ambient

magnetic field gave the perturbation due to all the materials not part of the BNL probe:

Figure 6.6: UW NMR probe mounted on 3D stage and inserted into cross-calibration setup
with active volume in BNL nominal position.
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Figure 6.7: Perturbation due to materials shown as a function of y-position. 0 mm marks
the position of the BNL probe active volume and gives the δother−mat correction. The error
bars are due to frequency changes resulting from position uncertainty.

δother−mat = 224 + /− 8 ppb, where 8 ppb is the uncertainty, σother−mat from three different

measurements. We also performed a y-axis scan with the NMR probe within the probes

holder to study how the material perturbation changed around the area where the BNL probe

active volume was nominally positioned. The same scan was conducted with the materials

removed from the magnet and the difference between the two scans (the perturbations from

the materials) are shown in Figure 6.7) as a function of position in y.

6.3.4 Other BNL Corrections

Since the shielded γ ratio in equation 6.9 is measured with water at 25◦C, we must make a

correction for temperature changes. We monitored the temperature of the BNL probe with

a temperature sensor, PT1000 [61], which remained at 23.0 +/- 0.2◦C throughout the cross-

calibration effort. This gave a temperature correction of δtemp = a∆T = −20.72 + / − 2.1

ppb, where a is -10.36 +/- 0.30 from [62].

The last effect we considered was radiation damping caused by induction current pro-

duced due to the detuning of the NMR coil. Fei et al. [55] saw no radiation damping

correction. We conducted a separate study with the cylindrical BNL probe, similar to the

3He magnetization dependence study in Section 6.4.1, and found this effect to be negligible.
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6.4 3He Corrections

The corrections made for the 3He probe include a magnetization dependent correction, a

glass correction, and frequency shifts from all materials besides the glass. It is important to

note here that the bulk correction (due to the bulk magnetism of the sample) is not made

by itself but instead is part of the magnetization dependent effect. If the same approach as

the BNL probe were used for 3He, we would have (using ε = 4π/3 for a sphere) a correction

of δbulk = (ε − 4π/3)χ3 = 0 for a spherical cell. However, the 3He gas container is not a

perfect sphere and has a stem, so the effect is nonzero. Since the effective susceptibility

which includes perturbations is χeff = µ0M/B0, the bulk effect directly contributes to the

magnetization M . Hence we studied frequency shifts caused by the magnetization of the

sample, δmag−dep, which include shifts from the bulk effect, instead of conducting a separate

bulk effect study (or using 0 from the theoretical prediction). The correction δmag−dep also

includes shifts due to effects of the oscillating current induced in the NMR coil, an effect

known as radiation damping.

6.4.1 3He Magnetization Dependent Effect Correction

Since the 3He NMR signal is created by the precessing nuclei, the FID amplitude is directly

proportional to the magnetization in the sample. Specifically, the amplitude of the signal

produced after the (k+1)th NMR pulse is proportional to the magnetization in the sample

just prior to this pulse, or at the time of the kth pulse. Hence to obtain a relationship

between frequency and magnetization we must compare the FID amplitude produced after

the (k+1)th pulse with the frequency of the FID measured for the kth pulse:

fk ∼Mk
z ∼ Ak+1 (6.11)

For this study, we analyzed 5 FIDs from each A-data set with 12 total sets from the 6

ABA campaigns (2 A-sets per ABA). Since these 5 FID signals are produced after the same
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initial polarization of the sample, the amplitude decays after each pulse as it is proportional

to the sample polarization and hence magnetization. Additionally, the probe remains in the

same position for these five measurements so we need not take frequency differences due to

position into account. Of the 12 A datasets, we only analyzed those for which the amplitudes

decayed with respect to pulse number to ensure consistency with the model. Due to this, 10

of the 12 sets were analyzed (dataset numbers 2-4, 8-9 listed in Table A.1 in Appendix A).

We fit the frequencies(k) as a linear function of the (k+1)th amplitudes as shown in Figure

6.8a for one of the data sets. The correction is given by:

∆f = mfitAmax, (6.12)

where mfit is the slope of the fit and Amax is the maximum amplitude of the FID signals

(generally the maximum amplitude corresponds to the k=1 pulse). Since the slope of the fit

is a measure of how the frequency shifts as the amplitude (or the magnetization) changes,

this equation corrects to the value of the frequency which would be measured if there were

no magnetization in the sample.

A weighted average of this correction for all data sets (given in Figure 6.8b) showed that

the frequency shifted by ∆favg = −0.12± 0.12 Hz due to sample polarization. This may be

consistent with ≈0, which is expected. We provide a calculation in Appendix B to estimate

this effect to be 0.2 mHz (ppt level). Additionally, our University of Michigan HeXe EDM

group found this effect to be on the sub-ppb scale using similar cells [47]. Since the frequency

shift from the ABA data is negative, we must add its absolute value back to the measured

frequency to make the correction: δmag−dep = +2.6 ± 2.6 ppb. The uncertainty is calculated

using:

σmag−dep = σm(Amax + σA), (6.13)

where σm is the error on the slope from the linear fit and σA is the uncertainty on the

amplitude from the FID fit.
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(a) Magnetization dependence of the fre-
quency for one dataset. The error bars are
determined from 68% confidence interval of
the extracted frequency and amplitude val-
ues from the Matlab fit.

(b) Magnetization dependent correction and
error for all 10 datasets. The error bars are
determined by propagating errors from each
fit, such as the one shown in (a), using equa-
tion 6.13.

Figure 6.8: Magnetization dependent study (a) and corrections (b)

The 6 ABA data sets analyzed above were conducted with the cell stem oriented vertically

in the +y direction in the magnet. While these data sets were taken for the cross-calibration,

we additionally performed two separate ABA campaigns with the stem pointing along the

magnetic field (+z direction) to study any effect caused by the rotation. Two of these 4 A

datasets (6A and 6A’ listed in Table A.1 in Appendix A) were also analyzed to determine

the magnetization effect which was found to be: ∆fz−axis = 0.5± 0.4 Hz, which is also close

to 0. The theoretical predication in Appendix B predicts the same (almost 0) effect for both

stem orientations. The discrepancy in the measured values could be due to detuning of the

NMR coil in between measurements since the effect includes contributions from radiation

damping. Note that while we used both magnetization dependent corrections − stem in

y and stem in z − in the next section before studying the glass effect, we only made the

y-orientation correction for the cross-calibration as this was the stem orientation used during

the calibration campaign.
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6.4.2 3He Glass Correction

The asphericity of the glass cell holding the 3He gas, the stem of the cell, and the glass itself

all give rise to material effects which we correct for with δglass. Since glass is diamagnetic,

the cell creates a shielding effect proportional to χ2 which is very small for a perfect sphere

when χ� 1 [55], [63] (see calculation in Appendix B). Since the cell is not a perfect sphere,

we study these effects empirically by rotating the cell about different axes and observing

the frequency changes. To do this, we first correct the frequencies from each study to

zero polarization (magnetization) using results from the previous section so the observed

frequency changes can only be attributed to the glass. Note that the spherical BNL probe

(discussed in section 6.7) also contained a thin stem but due to the geometry of the probe,

the stem rotation study we outline for 3He in this section was not done by Fei and the

rotation of the entire BNL probe was studied [55] instead.

Since the glass stem is diamagnetic, we hypothesize that the stem behaves as a dipole with

the induced magnetic dipole field aligned opposite ~B0. We predict that this induced dipole

field impacts the measured field value so that the 3He frequency measured is proportional

to the difference B0−Bdip. A first sign of this effect was seen when different T ∗2 values were

measured with the stem aligned parallel and perpendicular to the field. We know that a

dipole aligned with the field would cause larger gradients than one aligned perpendicular to

the field since the field of a dipole is given by P2(cosθ), where θ is the angle between the

magnet’s field and the dipole. In the motional narrowing regime (Chapter 3), a gradient

along the B-field direction causes T ∗2 to decrease for a sphere:

1

T ∗2
=

1

2T1
+

8γ2R4

175D
|∇zBz|2 (6.14)

Hence, if the stem creates a dipole field as we predict, the T ∗2 of the FID signal should be

shorter when the stem is aligned with the field than the T ∗2 measured when it is perpendicular

to the field. We indeed measured a much shorter T ∗2 , 0.75 s vs. 1.5 s, as shown in Figure 6.9.
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(a) Stem parallel to field θ = 0 (b) Stem perpendicular to field θ = 90◦

Figure 6.9: Shorter T ∗2 measured with stem parallel to field than when it is perpendicular.

We model the stem as a dipole to determine its effect on the frequency by varying the

angle θ between the stem (the dipole) and the magnetic field, and fitting the data to P2(cosθ),

which is the field caused by a dipole. Ideally, we would have liked to study this effect with

at least three measurements, or three different θ values, in the y-z plane since our cross-

calibration is performed with the stem in the +y direction and the magnetic field is in the

+z direction. However, while the positions with the stem pointing along the field (θ = 0,

+z direction) and perpendicular to the field (θ = 90◦, +y direction) were achievable (Figure

6.11b), the stem pointing in a direction opposite to either of these (−z: θ = 180◦ or −y:

θ = 270◦) were not. Pointing the cell stem along −z would block the optical pumping beam

and prevent hyperpolarization, making it impossible to measure the field in this orientation,

and the design of the 3He mount (Figure 5.4) did not allow enough room to point the stem

in the −y direction.

Instead, three θ positions were experimentally viable in the x-z plane, so we conducted a

study separate from the cross-calibration campaign with the stem pointing in +x (θ = 90◦),

+z (θ = 0) and −x (θ = 270◦). This study is also a test of our model since the stem aligned in

+z (or +x) would give a measure of the dipole aligned with the field (or perpendicular to the

field). We fit the extracted frequencies from these measurements to P2(cosθ) = 3cos2(θ)− 1
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(a) Stem rotation in xz plane.
(b) Stem rotation in yz plane with data corrected
to zero polarization. The arrow indicates the re-
sulting glass correction.

Figure 6.10: P2(cosθ) fit of stem rotation about field in (a) x-z and (b) y-z planes. Note
that the frequency offset in (a) between the two x-positions is due to magnet drift and
accommodated for by the error bars. The error bars in both (a) and (b) are due to the
frequency spread from the uncertainty in positioning the angle of the stem. The y-scales are
different for the two figures.

as shown in Figure 6.10a, which shows consistency with our model of the stem as a dipole.

The amplitude from the fit is 0.8 ± 0.3 Hz. We only used three data points here as it was

not practical to measure other angles to further confirm the P2 dependence.

Once the model was verified, we could go back to our measurements in the y-z plane, stem

pointing in +z and then +y, taken during the cross-calibration campaign. Before analyzing

this data, we first corrected for the magnetization dependent effect to ensure that the only

effect measured in this study would be due to the stem. Hence we first added the ∆fy,z from

the previous section to the frequencies taken with stem in the +y and +z directions, and

then fit with a P2 as shown in Figure 6.10b.

According to the model, there exists a unique angle θ between the stem and the field

at which the dipole contribution/effect on the field is 0. The amplitude of the fit in Figure

6.10b gives the frequency offset from this “0” position caused by the stem when it is oriented

along the y-direction (θ = 90◦). Since this is the orientation used for the cross-calibration,
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the fit amplitude and uncertainty give the glass correction: −0.6±0.2 Hz (δglass = -13 ± 4.3

ppb). Note that the sign of the frequency shift is negative due to the negative susceptibility

of glass. Alternatively, if the cross-calibration was performed with the stem pointed along

the magnetic field (θ = 0), the shift would be twice as large and in the opposite direction

since the offset from the “0” point to the θ = 0 position is two times the fit amplitude

(3cos2(θ)− 1 = 2 for θ = 0).

Additionally, we note that the amplitude from the y-z rotation (0.6 ± 0.2 Hz) is consistent

with the amplitude from the x-z rotation study (0.8 ± 0.3 Hz) even though no magnetization

dependent correction was made for the latter. This is because the NMR coil tuning, which

contributes to the magnetization dependent effect, was different when the x-z rotation was

conducted and the frequencies showed no magnetization dependence when plotted against

the amplitude (proportional to magnetization), while a dependence was seen for the cross-

calibration data. As a double check, another y-z rotation study was conducted when no

magnetization dependence was seen. This data was fit to a P2 without any correction for

the magnetization and yielded an amplitude of 0.6 ± 0.1 Hz, again consistent with the other

two studies. The three studies confirm that the measured glass correction is valid and also

show that the magnetization dependence effect arises mostly from the coil detuning.

In addition to measuring the dipole effect of the stem by rotating the cell to align the

stem along different axes, we also studied the effect of rotating the cell around the z and the

y axes while keeping the stem stable (pointed in the same direction - the axis of rotation).

One set of measurements was conducted with the stem pointing along the magnetic field

direction (+z) and rotating the cell about the z-axis. The measured frequencies were plotted

against the four angles used in the rotation and provided the scale of the effect due to the

shape and materials of the cell. For example, any asymmetry in the sphericity of the cell

can cause the frequency to shift. Additionally, if there is a small lump on one side of the cell

it could cause a perturbation much like the observed dipole effect of the stem. Lastly, there

was a piece of scotch tape on the cell for identification purposes, which could also behave as
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(a) Cell rotation about z-axis. (b) Cell rotation about y-axis.

Figure 6.11: Frequency spread when cell rotated with stem held fixed.The error bars in both
(a) and (b) are due to the frequency spread from the uncertainty in positioning the angle of
the stem. Note the y-scales are different for the two figures.

a dipole and contribute to the changes in frequency seen.

We then performed a set of measurements with the stem pointed in +y while rotating

the cell about the y-axis, and saw a smaller change in the frequency values. Since +y was

the orientation of the stem used during the cross-calibration, this last study provided the

uncertainty on the frequency measurement due to shape, materials, and asphericity of the

glass cell: ± 0.35 Hz (7.4 ppb), half of the maximum (peak-peak) variations 0.7 Hz.

6.4.3 3He Material Corrections

Since the glass correction is accounted for in the previous section, the materials correction for

3He did not include the glass cell. The perturbation due to the remaining materials within

and outside the probe were measured with the UW NMR probe and the ∆B=0 method, just

as was done for materials outside the BNL probe. The 3He mount was designed with this

goal specifically in mind and contained slots on either side of the mount through which the

NMR probe could be slid in and placed where the 3He cell nominally sits. After finishing
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(a) UW NMR Probe mounted on 3D
stage using one-sided mount.

(b) UW NMR Probe being inserted into 3He mount.

Figure 6.12: Apparatus for measuring 3He materials perturbations.

the cross-calibration campaign, we removed the sample cell from the mount, and placed the

mount back in the same position in the ivory probes holder sitting on the 1D stage. The

stage was moved back to the position used for 3He measurements.

The NMR probe was mounted on the 3D stage with a different mount than used for BNL

materials measurement. Here we used a 3D printed mount designed specifically to hold the

probe from one side so that the other side of the probe hung free (see Figure 6.12a). The

3D stage was controlled to slide the NMR probe into the position of the 3He cell within the

3He mount. Figure 6.12b shows the probe being inserted. We tried to position the NMR

probe active volume in the same location as the nominal 3He cell position using the ∆B = 0

method. Due to the geometry of the setup, the saddle coil wires prevented the NMR probe

from being placed exactly in the position where the cell center sits. Hence we were unable to

measure the perturbation due to the materials at that spot. However, we scanned the NMR

probe near that area (< 4 mm away) for various y-positions over a range of 5 mm. We then

slid out the 1D stage and scanned the field of the magnet with the NMR probe in the same

range (this was verified with ∆B=0). The difference between the two frequency ranges, 31
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Hz, gave the perturbation due to the probe and other materials for 3He. Based on these

scans and the known gradients in the magnet, the material perturbations were found to be

δmat =502 ± 24 ppb. The uncertainty here is large compared to all other corrections due to

the position offset of this measurement.

6.4.4 Other 3He Corrections

The temperature dependence of the 3He susceptibility is much smaller than water, hence we

need not take this correction into account.

6.5 Other Errors

Table 6.1 lists all the individual BNL and 3He probe corrections from the previous two

sections, as well as the global corrections. The global errors are those that are the same for

each frequency measured by a probe, including the measurement uncertainty due to statistics,

the precision of the DAQ clock, and position repeatability of the probes, all explained below.

Lastly, we list the uncertainty on the ratio of the shielded γ’s used to compare the BNL

frequency to the 3He frequency [27].

6.5.1 Uncertainty from Frequency Extraction and Statistics

Each set of five measurements for an ABA data set exhibited some frequency spread. The

standard deviation of this spread for each measurement provided a statistical uncertainty

on the measured frequency value. For the BNL probe this was 0.05 Hz (0.8 ppb with

respect to proton NMR frequency 61.7 MHz), while for the 3He probe, this was 0.06 Hz

(1.3 ppb with respect to Helium-3 NMR frequency 47 MHz). Additionally, the BNL probe

extracted frequencies were found to be dependent on the fit model while the 3He frequencies

were not. Based on this dependence detailed in Appendix A, we assigned an uncertainty

to our frequency extraction method for the BNL probe σfreq−extr = 0.3 Hz (4.9 ppb). This
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Effect Correction (ppb) Uncertainty (ppb)

BNL Probe
Linear Drift few ppb 5.5
Bulk effect -1509 4.2 [58]
Probe materials 47 10 [55]
Probe rotation – 20 [55]
Other materials 224 8
Temperature -20.72 2.1
Radiation Damping – small
Frequency Extraction – 4.9
Frequency Statistical – 0.8
Position Repeatability – 4.1

BNL Probe Total Uncertainty: 24.8 ppb
3He Probe
Magnetization Dependence 2.6 2.6
Glass correction (stem) -13 4.3
Glass correction (rot) – 7.5
Materials 502 24
Frequency Statistical – 1.3
Position Repeatability – 4.1

3He Probe Total Uncertainty: 26 ppb

Clock stability – 0.2
Gamma ratio γ′3/γ

′
p 0.7617861313 4.3 [27]

Cross Calibration Total Uncertainty: 36.4 ppb

Table 6.1: Cylindrical BNL probe cross-calibration with 3He probe: all corrections and
uncertainties. The final error of 36 ppb results from adding the uncertainties in quadrature
as described in Sec. 6.6 and is with respect to proton NMR frequency 61.7 MHz.

discrepancy is due to the fact that the BNL signal is not a true exponential decay. Due to the

pressure broadening in hyperpolarized 3He gas, the FID can be modeled as an exponentially

decaying sinusoid and hence this effect only arises for the BNL probe.

6.5.2 DAQ Clock

The NMR DAQ frequencies, both outgoing (NMR pulse) and incoming (FID Signal), were

synced using an external function generator (SRS SG382 - Option 4) with an internal Ru-

bidium clock. We measured the uncertainty due to this clock by sending a known signal to

100



the DAQ, 100 Hz away from the Local Oscillator frequency as described in section 5.3.2.

The frequency of this signal was measured through the DAQ on LabVIEW, just as the NMR

FID signals from either probe. Over a set of 200 measurements, we found that the frequency

values changed by 0.009 Hz (0.2 ppb) peak to peak, hence this error, σclock, is negligible.

6.5.3 Position Uncertainty

The uncertainty in the positioning of both probes must be taken into account as they were

both moved during the cross-calibration campaign as explained in the ABA measurements

section. This uncertainty was found by measuring the repeatability of the positions with

the 1D stage for the z-direction, and the precision of the ∆B=0 measurements for the x and

y directions. As explained in section 6.1.2, the position repeatability was good to 0.2 mm,

which combined with the gradient dBz/dz, resulted in an uncertainty of σpos = 4.1 ppb for

the frequency measurements.

6.6 Cross-Check and Error Propagation

All ABA data for the cross-calibration are listed in Appendix A. Here we give the final

averaged results after all corrections are made.

6.6.1 Error propagation for BNL

Each BNL frequency measurement has some uncertainty from the DAQ clock, uncertainty

from the position measurement and uncertainty from the fit due to frequency extraction as

well as statistical frequency fluctuations. The measured frequency for each measurement i

is:

ωmeasp,i = 2π(fextracted + 61715400) (6.15)

101



with a combined error of:

σωmeasp,i
=
√
σ2
clock + σ2

freq−extr + σ2
freq−stat + σ2

pos, (6.16)

where σclock is negligible. The ωmeasp,i frequency values are then used to find the linear drift of

the magnet and correct for it as explained in section 6.3.1, producing the corrected frequency

values ωlin−driftp,i . As the above error on each frequency σωmeasp,i
is used in the fit, the error

given by the fit on the fit parameters (slope and intercept) is correlated with σωmeasp,i
. Hence,

we need not propagate these errors into σωlin−driftp,i
, which is calculated by combining the

errors from the fit parameters σslope and σintercept:

σωlin−driftp,i
=

1

N
[
N∑
i

(tiσslope)]
2 + σ2

intercept (6.17)

where ti are the times at which we compute the new frequency values, and N is the number

of ti’s. Once the linear drift has been accounted for, we can make the rest of the corrections

from section 6.3: bulk correction, perturbation due to materials (both within and outside

the probe), temperature correction and radiation damping:

ω′p,i =
ωlin−driftp,i

1− δcorrections
=

ωlin−driftp,i

1− δbulk − δprobe−mat − δother−mat − δtemp − δrad−damp
(6.18)

where the prime denotes that the value is corrected to the shielded proton measurement.

The error σω′p,i on this value is given by:

σ2
ω′p,i

=
[ ω′p,i

ωlin−driftp,i

]2
σ2

ωlin−driftp,i

+
[ ω′p,i
1− δcorrections

]2
[σ2
bulk+σ

2
probe−mat+σ

2
other−mat+σ

2
temp+σ

2
rad−dam]

(6.19)
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After making these corrections for each frequency measurement of the BNL probe, we average

the measurements to find a final value with an uncertainty 24.8 ppb:

ω′p = 61715758.45 ± 1.53 Hz (6.20)

6.6.2 Error propagation for 3He

Since we take the magnet drift into account and correct the BNL frequencies for 3He mea-

surement times, there is no linear drift correction for 3He probe frequencies. Thus, the

error propagation is much simpler. We start by adding the extracted frequency to the Local

Oscillator frequency:

ωmeas3,i = 2π(fextr + 47014000) (6.21)

We then make each of the corrections explained in section 6.4:

ω′3,i =
ωmeas3,i

1− δcorrections
=

ωmeas3,i

1− δmag−dep − δglass − δmat
(6.22)

The combined error on this value is then given by:

σω′3 =
[ ω′3,i
ωmeas3,i

]2
[σ2

ωfreq−stat3

+σ2
ωpos3

+σ2
cell−rot]+

[ ω′3,i
1− δcorrections

]2
[σ2
mag−dep+σ

2
glass+σ

2
mat] (6.23)

The result of the 3He probe measurement is:

ω′3 = 47014209.57 ± 1.22 Hz (6.24)

corresponding to an uncertainty of 26 ppb.
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6.6.3 Combining Errors for a final number

Now that we have values for 3He and BNL probe absolute frequencies, we can compare the

two using the ratio of the shielded γ’s. We predict the BNL probe frequency using the 3He

measured frequency and compare it to the measured BNL value.

ω′p
predicted =

γ′p
γ′3
ω′3 = 61715759.37 Hz (6.25)

with an error of

σωpredictedp
′ =

√[ω′ppredicted
ω′3

σω′3

]2
+
[ω′ppredicted

γ′
σγ′
]2

= ± 1.64 Hz (6.26)

The final number for the cross-calibration is then the difference between the predicted

BNL value and the actual BNL value:

ω′p − ω′ppredicted = 0.92 ± 2.23 Hz (6.27)

This corresponds to a cross-calibration of the two probes to 36.4 ppb with respect to the

proton NMR frequency of ∼61.7 MHz.

6.7 Spherical Probe Cross Calibration

The spherical BNL probe based on water was cross-calibrated with the 3He probe using the

same techniques described for the cylindrical probe calibration. Since the methods were

given in detail earlier in this chapter, we only provide brief descriptions here except for when

differences need to be pointed out.

In between the two cross-calibration campaigns, the field of the Argonne magnet was

ramped up to 4 T for a different experiment and then back down to 1.45 T. Consequently,

the currents which shimmed the passive coils to improve magnetic field homogeneity had to
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be remeasured. We conducted magnetic field scans with a UW NMR probe, since it could be

mounted on a 3D stage and moved in all three axes. Magnetic field scans were performed as

a function of position (motor encoder bits) along the x, y, and z axes for two different current

values. Based on these scans, the ∆B = 0 positions were found in all three directions, as

well as the currents to make the field at this point more uniform. The new current values

were: Ix = −0.14 A, Iy = 0.16 A, and Iz = −0.15 A. The spherical probe cross-calibration

campaign was carried out using these current values for the passive coils.

In order to perform the analysis for each cross-calibration separately, a new blind was

implemented, this time for the BNL data. Another binary file with a random number

between ±8 Hz was generated using Matlab. This range was about half the size of the

blinding implemented for the cylindrical probe calibration. The blind offset was added to

each BNL frequency in both online and offline analyses, while the offset itself was kept

hidden from the user. This time, the 3He probe frequencies remained unblinded for the

relative cross-calibration.

Both the spherical BNL probe and the 3He probe were mounted in the same ivory 3D

printed holder described in section 6.1.1. A new 3He mount (top half) was used with wider

slots on each side so the NMR probe could more easily measure the materials perturbation.

However, the saddle coil wires were still an obstacle and the measurement uncertainty re-

mained large (see below). The ∆B = 0 positions were found for each probe and the probes

were held fixed in these locations for x and y, while the movement in the z-axis was controlled

with the 1D stage. Due to limited access to the magnet, 3 sets of measurements were taken

for the cross-calibration over a period of 1.5 hours. An ABBA scheme was chosen as opposed

to ABA in an effort to minimize linear drift effects in between measurements:

• Position 3He probe at measurement location,

• Verify position with ∆B = 0,

• (A) Measure 5 FIDs with 3He probe,
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• Move BNL probe to measurement location,

• (B) Measure 5 FIDs with BNL probe,

• Check BNL position with ∆B = 0,

• (B) Measure 5 FIDs with BNL again,

• Move 3He probe to measurement location,

• (A) Measure 5 FIDs with 3He probe, and finally

• Verify position with ∆B = 0.

The corrections for each probe, spherical BNL and 3He, as well as the global corrections

and all uncertainties are listed in Table 6.2. The corrections and uncertainties are explained

in detail in the next two sections and the final result of this cross-calibration is provided.

6.7.1 BNL Probe Corrections

The same corrections, some with different values and uncertainties, were made for the spheri-

cal BNL probe as the cylindrical one. Due to the new ABBA method with less time between

measurements, the linear drift of the frequencies was small and hence the correction and

uncertainty were also smaller for this calibration: σlin−drift = 2ppb (0.12 Hz). No bulk

correction was necessary for the spherical water sample since ε = 4π/3 for a sphere so the

bulk correction is δbulk= (ε − 4π/3)χp= 0. The correction due to materials making up the

probe were again from Fei [55]: 44 ± 18 ppb. Next, the perturbation due to the materials

outside the probe was measured with the UW NMR probe and the correction was found to

be δother−mat = 178 ± 8 ppb. Lastly, the monitored temperature of the probe was 24.2 ±

0.2◦C, which gave a correction of δtemp = −7.8± 2.1 ppb. All other corrections remained the

same. The final BNL probe result with the above corrections is (unblinded):

ω′p = 61710229.90 ± 1.48 Hz (6.28)
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with a total uncertainty of 24 ppb.

6.7.2 3He Probe Corrections

For the 3He probe, the gas magnetization effect was again found by checking the frequency

dependence on the amplitudes for each data set A. The weighted average from all six data sets

showed that the frequency shifted by ∆f = 0± 0.2 Hz on average. Hence we did not make a

magnetization dependent correction in this case but used the uncertainty: σmag−dep = ±4.3

ppb. We were not able to perform any cell stem rotation studies during this cross calibration

campaign due to time limitations, and instead relied on previous data for the glass correction.

Since we found a consistent value for the glass stem correction from three different studies

as explained in section 6.4.2, we used the same glass correction and uncertainties for this

cross-calibration: δglass−stem = −13± 4.3 ppm and σcell−rot = 7.5 ppb.

Perturbations due to materials within and around the probe (minus the glass cell) were

again measured using an NMR probe. The top half of the 3He mount had been replaced for

this cross-calibration, hence we expected the materials correction to change. The correction

was found to be δmat = 424 ± 26 ppb. Again the uncertainty is due to the fact that the

NMR probe could not be placed exactly at the center of the 3He cell location, and we instead

performed a scan near the area. The remaining uncertainties are the same as the previous

cross-calibration. Using these, the final corrected 3He frequency is:

ω′3 = 47009998.24 ± 1.3 Hz (6.29)

with an uncertainty of 27.8 ppb with respect to Helium-3 NMR frequency.

6.7.3 Final Result for Spherical Probe Cross Calibration

All ABBA data for this cross-calibration are listed in Appendix A. Here we give the final

averaged results after all corrections are made. Following the method of the cylindrical probe
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Effect Correction (ppb) Uncertainty (ppb)

BNL Probe
Linear Drift few ppb 2
Bulk effect – –
Probe materials 44 10 [55]
Probe rotation – 20 [55]
Other materials 172 8
Temperature -7.8 2.1
Radiation Damping – small
Frequency Extraction – 4.9
Frequency Statistical – 0.8
Position Repeatability – 4.1

BNL Probe Total Uncertainty: 24 ppb
3He Probe
Magnetization Dependence – 4.3
Glass correction (stem) -13 4.3
Glass correction (rot) – 7.5
Materials 454 26
Frequency Statistical – 1.3
Position Repeatability – 4.1

3He Probe Total Uncertainty: 27.8 ppb

Clock stability – 2
Gamma ratio γ′3/γ

′
p 0.7617861313 4.3 [27]

Cross Calibration Total Uncertainty: 37.2 ppb

Table 6.2: Spherical BNL probe cross-calibration with 3He probe: all corrections and un-
certainties. The final error of 37 ppb results from adding the uncertainties in quadrature as
described in Sec. 6.6 and is with respect to proton NMR frequency 61.7 MHz.

cross-calibration, we first predict a BNL probe measurement with the 3He probe by using

γ′p/γ
′
3:

ω′p
predicted =

γ′p
γ′3
ω′3 = 61710231.14 ± 1.75 Hz (6.30)

Finally the difference between the predicted BNL value and the measured BNL value, i.e.

the result of the cross calibration is:

ω′p − ω′ppredicted = 1.24 ± 2.29 Hz (6.31)

Hence, we cross-calibrate the spherical probe with an uncertainty of 37.2 ppb.
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Chapter 7

Conclusion and Looking Forward

7.1 Summary

We have described the construction and function of a magnetometer based on 3He gas. Stud-

ies at both low magnetic fields (10s of Gauss) and high magnetic field (1.45 Tesla) have been

reported. The high field was measured absolutely in terms of the helion frequency (not free

3He nuclei) to 26 ppb total achieved uncertainty. While Nikiel et al. have reported track-

ing of magnetic field changes δB/B to 10−12 at high fields (>0.1 T) [64], to our knowledge

the field measurement presented in this work sets a new standard on 3He magnetometry.

Additionally, the 3He probe was used to cross-calibrate two water-based probes previously

employed for the absolute calibration of the Brookhaven National Lab muon g−2 experiment

(E821) [18]. The purpose of the cross-calibrations was to check the error on the BNL abso-

lute probes which contributed to the uncertainty on the measured muon magnetic moment

anomaly aµ, which differed from the SM prediction by >3σ.

Both the cylindrical and spherical BNL probes were cross-calibrated with 3He in a 1.45

T field by measuring the field value with each probe in the same location of the magnet with

these locations found using a precise method (∆B = 0). Each of the two cross-calibration

campaign was performed within a few hours (5 and 3 hours) in order to minimize field drift
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effects, avoid un-mounting and remounting of the probes which could introduce material

perturbations, and prevent larger magnetization dependent effects from different coil tuning.

The BNL measurements were corrected to compensate for the (small) magnetic field drift and

then corrected to the standard of shielded protons in water. The 3He probe measurements

were corrected to the shielded helion and then the ratio γ′3/γ
′
p was used to predict a BNL

value with the 3He measurement and compare it with the corrected BNL measurement.

After we were confident in each value of all corrections, we unblinded the previously

blinded 3He and BNL data before the corrections were made. Figures 7.1a and 7.1b show a

schematic of the corrections (not necessarily made in the order shown). The cylindrical and

spherical BNL probes were successfully cross-calibrated to 36 and 37 ppb, respectively. The

3He frequency measurements were in agreement with both probes within error and therefore

we can definitively say that the discrepancy between the measured value and SM prediction

of aµ was not caused by error due to the absolute calibration in E821.

7.2 Suggestions for Future Improvements

While the cross-calibrations were performed to very high precision, it is possible to reduce

some of the uncertainties in the future. The largest correction and uncertainty were due

to the materials that made up and surrounded the 3He probe. These can be reduced by

3D printing another iteration of the probe mount with a lower fill (less dense mount). The

same could be done for the 3D printed holder in which both probes were mounted for the

cross-calibration. These changes would reduce the 3He materials correction. A study of

different types of materials used for 3D printing could also lead to a smaller perturbation.

For example, we found during some preliminary material studies that the copper shield and

the PLA plastic used to 3D print the 3He mount perturbed the field in opposite directions.

A more rigorous study of these perturbations could lead to a mount design with a much

lower overall materials correction from the canceling effect between copper and plastic.
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(a) Schematic of corrections made for cylindrical BNL probe cross-calibration
with 3He probe with final uncertainties.

(b) Schematic of corrections made for spherical BNL probe cross-calibration
with 3He probe with final uncertainties.

Figure 7.1: Cross-calibration corrections schematics.
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The large uncertainty (26 ppb) of the materials correction resulted from the fact that an

NMR probe could not be placed at the position of the 3He sample cell due to the geometry

of the mount. We attempted to slide the NMR probe horizontally into the 3He cell position

using slots on either side of the mount. Alternatively, a new iteration could contain slots on

the top and bottom of the mount across from the position of the sample cell, through which

the NMR probe could be inserted vertically and measure at the position of the cell more

precisely without interference from the saddle coil.

Another potential benefit of adding through holes on the top and bottom parts of the

mount for the NMR probe is that the cell stem would be able to fit in this slot. This would

make another cell stem orientation achievable which could then be used to perform a more

rigorous stem rotation study, which was not possible with the current mount geometry. In

general, it would also be beneficial to conduct further rotation studies in all three planes x-y,

y-z, and x-z, which were not carried out for this work. Given more time, these measurements

could be performed for more than just three angles of the stem, which would increase the

confidence level in the dipole model of the cell stem.

Lastly, while this dissertation work only used one 3He sample cell for the cross-calibrations

due to time restraints, it would be advantageous to employ more cells. The next iteration

of cells could be constructed more carefully to have a more spherical shape, which would

reduce the uncertainty from the glass rotation. As described in Chapter 2, each cell would

give rise to a different set of systematic errors, such as the stem rotation effect, which would

increase the level of confidence in the cross-calibrations.

7.3 Future Measurements Scope

In addition to providing better cross-calibrations of the BNL water probes, an improved

3He magnetometer (as well as the current one) could be used to cross-calibrate the water

probes (made by University of Massachusetts group) currently employed for the absolute
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calibration effort of the muon g-2 experiment at Fermilab (E989). While the E989 goal for

the field measurement calibration was proposed to be 34 ppb [24], the probes have been

shown to measure the field with even smaller errors. Hence, a cross-calibration with an

independent system would be extremely useful for an experiment planning to measure the

muon magnetic moment anomaly to highest precision yet. If any discrepancies continue to

be seen with theoretical predictions, the proposed cross-calibration of the water probes with

the 3He probes would be essential.

The cross-calibration reported in this work relied on the shielded proton to shielded helion

ratio (γ′3/γ
′
p) from [27]. Future possible measurements of the unshielded helion gyromagnetic

ratio to a few ppb as proposed in [65] and [66] could provide an absolute calibration of the

magnetic field measurement for E989. Alternatively, the cross-calibration with the water

probes from this work could yield a measurement of the helion gyromagnetic ratio by using

the unshielded proton magnetic moment standard.
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Appendix A

NMR Fitting and Tabulated

Cross-Calibration Data

The function used to fit the 3He NMR FID data in Matlab was an exponentially decaying

sinusoid (as given in Chapter 4):

V (t) = A+Bcos(ωt+ φ)exp(−t/T ∗2 ) (A.1)

where A is an offset, B is the signal amplitude, ω = 2πf is the mixed down frequency, φ is

the phase, and T ∗2 is the transverse relaxation time discussed in Section 3.3. The weights

for the data points used for fitting were determined from the average noise level, which

was measured by acquiring data with the NMR electronics without polarizing the gas or

sending an NMR pulse. Figure A.1 shows an example of a high-field FID fit with residuals

− the difference between fit function and the data. The small values of the residual points

distributed randomly about 0 validate this fit model as does the value of χ2 per degree of

freedom = 0.9.

In a cell of 3He gas, the atoms move around and sample different parts of the cell and

hence experience different magnetic fields. Due to this pressure broadening effect, the T ∗2

relaxation times for higher pressure gases can be longer [45]. Since the probability of this
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Figure A.1: High field FID data (plotted in blue), fit (red), and residuals (green).

diffusion of the nuclei is exponential in time, the 3He precession signal is an exponentially

decaying sinusoid. The water magnetization, on the other hand, does not exhibit the same

behavior since the water molecules are stationary. Hence the NMR signals are not accurately

exponential decays. Thus, using the function in A.1 to fit the water data does not work very

well. We show an example fit in Figure A.2a with a χ2/dof = 3.8. Note the χ2 calculation

(a) Raw BNL probe data (blue) analyzed us-
ing equation A.1 (red). The residuals are
plotted in green.

(b) BNL data multiplied by envelope function
(blue) and then fit to A.1 (red). The residuals
are plotted in green.

Figure A.2: BNL data fit using two methods. Note that there is 60 Hz noise which causes
the shape of the residuals. The fit amplitude does not change.
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assumed uniform voltage noise on the signal of 0.048 V for the fits shown.

Since our FID fit model from Equation A.1 is not accurate for water FIDs, we multiplied

the signal by a damping factor e−t/Tdamp after removing the offset, found by averaging the

y-data points. Here we used Tdamp shorter than the extracted T ∗2 value from the first fit

attempt from Figure A.2a to ensure that the amplitude decay is dominated by the damping

exponential. We then analyzed the new data with the same fit function from A.1 as shown

in Figure A.2b which resulted in a much better fit: χ2/dof = 0.6. These new extracted

frequency values were used for the cross-calibration and a fit model dependent uncertainty

of 0.3 Hz was used due to frequency shifts seen between the two fitting methods.

The extracted fit parameters − the (unblinded) frequency, T ∗2 , and amplitude − of each

FID cross-calibration dataset are tabulated below. The uncertainty from the fit on each

parameter is also listed. Table A.1 lists all the 3He data from the cylindrical probe cross-

calibration. Each ABA cross-calibration consisted of 5 FIDs. The table lists fit parameters

for each of these 5 FIDs for each dataset where the prime (such as 2A’) denotes the second ‘A’

in ‘ABA.’ Datasets numbered 2-4 and 7-9 (total 12) were taken with the cell stem oriented

along the y-axis and were directly used for the cross-calibration. Datasets 5-6 (total 4) were

taken with the stem oriented along the z-axis (magnetic field direction) and were only studied

to determine the polarization dependence and glass corrections. Table A.2 similarly lists all

the data for the ‘B’ measurements in ‘ABA’ numbered 2-4 and 7-9 (total 8).

The spherical probe cross-calibration data is then listed in Tables A.3 and A.4 for the

3He and spherical BNL probes. Since an ABBA cross-calibration scheme was employed, the

tables list the A, A’, B, and B’ fit parameters and uncertainties. All 3He data was taken with

the stem oriented along the y-axis. Lastly, note that all data listed for both the cylindrical

and spherical BNL probes was fit using the damping envelope function model discussed

earlier in this appendix.
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Dataset Freq (Hz) σfreq (Hz) T ∗2 (s) σT ∗2 (s) Ampl (V) σAmpl (V)

2A 183.9546 0.029 0.3162 0.0182 0.0247 0.0006
184.0337 0.0287 0.3576 0.023 0.023 0.0006
184.0165 0.0298 0.3579 0.0239 0.022 0.0006
183.9794 0.0292 0.3779 0.0261 0.021 0.0005
184.011 0.0295 0.3387 0.0213 0.0212 0.0005

2A’ 184.1926 0.03 0.342 0.022 0.0194 0.0005
184.1874 0.0301 0.3311 0.0207 0.0191 0.0005
184.2211 0.0301 0.3458 0.0226 0.0183 0.0005
184.2364 0.0306 0.3375 0.0218 0.0181 0.0005
184.1629 0.0314 0.3639 0.026 0.0166 0.0005

3A 184.5614 0.0286 0.3426 0.021 0.0241 0.0006
184.5906 0.0285 0.3355 0.0201 0.024 0.0006
184.5649 0.0289 0.3566 0.0231 0.022 0.0006
184.5443 0.0293 0.3338 0.0205 0.0222 0.0006
184.5464 0.0291 0.3454 0.0217 0.0209 0.0005

3A’ 184.6789 0.0304 0.3312 0.0209 0.0202 0.0005
184.7092 0.0304 0.3353 0.0214 0.0201 0.0005
184.7559 0.0303 0.3443 0.0225 0.0191 0.0005
184.6946 0.0304 0.3419 0.0223 0.0187 0.0005
184.701 0.0303 0.3308 0.0208 0.0186 0.0005

4A 185.8362 0.0293 0.3511 0.0227 0.0238 0.0006
185.8392 0.0296 0.3464 0.0223 0.0231 0.0006
185.8152 0.0299 0.3023 0.0171 0.0239 0.0006
185.7885 0.0304 0.3365 0.0216 0.0227 0.0006
185.8201 0.0299 0.3237 0.0197 0.0219 0.0006

4A’ 185.9568 0.0309 0.3498 0.0237 0.0206 0.0006
185.9794 0.0314 0.3527 0.0245 0.0194 0.0005
186.0036 0.0314 0.3058 0.0184 0.02 0.0005
185.9799 0.0315 0.3483 0.024 0.0185 0.0005
185.9989 0.0325 0.3547 0.0256 0.0174 0.0005

7A 187.775 0.0419 0.3162 0.0263 0.0082 0.0003
187.8073 0.0449 0.3122 0.0274 0.008 0.0003
187.7588 0.0479 0.2871 0.0248 0.0081 0.0003
187.7319 0.0499 0.3093 0.0299 0.0072 0.0003
187.8714 0.0493 0.3071 0.0292 0.0073 0.0003

7A’ 187.7181 0.0549 0.2686 0.0248 0.008 0.0004
187.807 0.0538 0.3736 0.0471 0.0066 0.0003
187.7289 0.0576 0.2534 0.0232 0.0076 0.0003
187.8048 0.0555 0.3253 0.0368 0.0066 0.0003
187.7966 0.0569 0.2976 0.0316 0.0069 0.0003

Table A.1: 3He data from cylindrical probe ABA cross-calibration (continued on next page).
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8A 187.7382 0.0324 0.2883 0.0169 0.0199 0.0005
187.7297 0.0319 0.2908 0.0169 0.0196 0.0005
187.7756 0.0327 0.2985 0.0183 0.0184 0.0005
187.7653 0.033 0.2793 0.0161 0.0185 0.0005
187.7671 0.034 0.2745 0.0161 0.0182 0.0005

8A’ 187.9095 0.0349 0.2796 0.0171 0.0175 0.0005
187.9222 0.0351 0.2879 0.0182 0.0167 0.0005
187.9398 0.0352 0.3066 0.0207 0.0157 0.0005
187.9243 0.0359 0.2985 0.02 0.0155 0.0005
187.9401 0.0357 0.2948 0.0194 0.0153 0.0005

9A 188.3027 0.0294 0.4826 0.043 0.0181 0.0005
188.3368 0.0299 0.474 0.0422 0.0177 0.0005
188.2869 0.0308 0.4597 0.0409 0.0171 0.0005
188.3324 0.0306 0.4885 0.0458 0.0161 0.0005
188.3281 0.0318 0.4968 0.0493 0.0156 0.0005

9A’ 188.3474 0.0325 0.4786 0.0467 0.0145 0.0004
188.3739 0.0325 0.4691 0.0448 0.0142 0.0004
188.3266 0.0325 0.5114 0.0533 0.0133 0.0004
188.3631 0.0331 0.5019 0.0523 0.013 0.0004
188.3789 0.0333 0.5559 0.0646 0.0124 0.0004

5A 185.5298 0.035 0.3987 0.0351 0.0106 0.0003
185.5789 0.0349 0.3624 0.0289 0.0107 0.0003
185.5437 0.0357 0.3944 0.035 0.0103 0.0003
185.5195 0.0362 0.307 0.0215 0.0113 0.0003
185.4826 0.0359 0.3613 0.0295 0.0105 0.0003

5A’ 185.7877 0.0436 0.3113 0.0266 0.0101 0.0004
185.7256 0.0443 0.2967 0.0246 0.01 0.0004
185.7126 0.0435 0.3849 0.0406 0.009 0.0003
185.6214 0.041 0.3598 0.0335 0.0093 0.0003
185.6433 0.0453 0.3207 0.0294 0.0094 0.0004

6A 186.0181 0.0319 0.3063 0.0188 0.0168 0.0004
186.0757 0.0304 0.3658 0.0255 0.0153 0.0004
186.0933 0.0314 0.3425 0.0232 0.0151 0.0004
185.992 0.0307 0.4009 0.031 0.0142 0.0004
186.1131 0.0323 0.3586 0.0261 0.0141 0.0004

6A’ 186.1693 0.0323 0.3156 0.0202 0.0146 0.0004
186.2154 0.0328 0.3616 0.027 0.0134 0.0004
186.1185 0.0329 0.2948 0.018 0.0144 0.0004
186.1369 0.0319 0.3809 0.0291 0.0127 0.0004
186.2124 0.033 0.3455 0.0247 0.0128 0.0004
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Dataset Freq (Hz) σfreq (Hz) T ∗2 (s) σT ∗2 (s) Ampl (V) σAmpl (V)

2B 433.1021 0.3265 0.0667 0.0088 0.2736 0.0242
433.1009 0.3275 0.0664 0.0088 0.2608 0.0231
433.1493 0.3284 0.0677 0.009 0.2553 0.0225
433.1733 0.3268 0.0669 0.0089 0.2577 0.0228
433.2493 0.3268 0.066 0.0088 0.2609 0.0233

3B 433.6672 0.3286 0.0671 0.0089 0.2711 0.0241
433.7635 0.3286 0.0674 0.009 0.2569 0.0228
433.764 0.3281 0.067 0.0088 0.2568 0.0227
433.7727 0.3296 0.0672 0.009 0.2558 0.0228
433.7278 0.329 0.0667 0.0088 0.2573 0.0227

4B 435.3793 0.3333 0.0659 0.0088 0.2718 0.0244
435.2542 0.3366 0.0663 0.009 0.256 0.0231
435.2344 0.3367 0.0667 0.0091 0.2534 0.0229
435.2197 0.3373 0.0661 0.0089 0.2558 0.023
435.2995 0.3349 0.0659 0.0088 0.2561 0.023

7B 437.7493 0.3547 0.0645 0.0087 0.2468 0.0226
437.8658 0.3541 0.0644 0.0087 0.2508 0.023
437.8126 0.3549 0.0647 0.0088 0.2513 0.0231
437.8377 0.3548 0.0642 0.0088 0.2521 0.0234
437.7621 0.3555 0.0645 0.0088 0.251 0.0232

8B 438.029 0.354 0.0644 0.0087 0.2675 0.0245
438.0526 0.3535 0.0648 0.0088 0.252 0.0231
438.0983 0.3543 0.0648 0.0089 0.2507 0.0231
438.079 0.3539 0.0647 0.0088 0.2516 0.0231
437.9955 0.3542 0.0645 0.0087 0.2518 0.0231

9B 438.5842 0.3578 0.0632 0.0085 0.2673 0.0246
438.6449 0.3572 0.0634 0.0086 0.2527 0.0233
438.6447 0.3567 0.0636 0.0086 0.2515 0.0231
438.6558 0.3549 0.0635 0.0085 0.2514 0.0229
438.5125 0.3554 0.0636 0.0085 0.2514 0.0229

Table A.2: Cylindrical BNL probe data for ABA cross-calibration with 3He probe.
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Dataset Freq (Hz) σfreq (Hz) T ∗2 (s) σT ∗2 (s) Ampl (V) σAmpl (V)

1A 177.7317 0.0917 0.373 0.0799 0.0018 0.0001
177.8314 0.0873 0.5065 0.1401 0.0018 0.0001
177.9051 0.0886 0.4737 0.1243 0.0018 0.0001
177.427 0.0988 2.4211 3.6347 0.0014 0.0001
177.8043 0.0929 0.4688 0.1277 0.0017 0.0001

1A’ 177.8144 0.0515 0.5634 0.1022 0.0043 0.0001
177.6413 0.0525 0.8225 0.2227 0.0039 0.0001
177.7666 0.0519 0.5048 0.0828 0.0043 0.0001
177.7446 0.0539 0.4733 0.0755 0.0043 0.0001
177.704 0.0532 0.4488 0.067 0.0043 0.0001

2A 177.3368 0.0499 0.4505 0.0636 0.0049 0.0002
177.3734 0.0521 0.4345 0.0617 0.0048 0.0002
177.4402 0.0496 0.653 0.1326 0.0046 0.0002
177.3149 0.051 0.568 0.1033 0.0046 0.0002
177.3494 0.0512 0.5325 0.0912 0.0047 0.0002

2A’ 177.5227 0.0942 0.3694 0.0806 0.0018 0.0001
177.3087 0.0899 0.8061 0.3671 0.0015 0.0001
177.524 0.0895 1.5129 1.2846 0.0015 0.0001
177.5521 0.0915 0.3224 0.0597 0.0019 0.0001
177.3795 0.0947 0.3998 0.095 0.0016 0.0001

3A 177.3277 0.0517 0.6434 0.1344 0.0037 0.0001
177.4031 0.053 0.4697 0.0734 0.004 0.0001
177.4696 0.052 0.7397 0.1783 0.0037 0.0001
177.3532 0.0538 0.4471 0.0675 0.0039 0.0001
177.4333 0.0512 0.4999 0.0803 0.0039 0.0001

3A’ 177.344 0.0555 0.4269 0.0635 0.0037 0.0001
177.2751 0.0565 0.4381 0.0681 0.0035 0.0001
177.447 0.0523 0.781 0.2001 0.0034 0.0001
177.444 0.0539 0.5426 0.0996 0.0035 0.0001
177.3795 0.0532 0.9771 0.3188 0.0032 0.0001

Table A.3: 3He data from spherical probe ABBA cross-calibration.
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Dataset Freq (Hz) σfreq (Hz) T ∗2 (s) σT ∗2 (s) Ampl (V) σAmpl (V)

1B 316.7919 0.5117 0.0501 0.008 0.1385 0.0165
316.6488 0.5004 0.0504 0.008 0.1375 0.0164
316.7469 0.5028 0.0486 0.0075 0.1423 0.0168
316.8624 0.5098 0.0495 0.0078 0.1393 0.0165
316.7871 0.509 0.0492 0.0077 0.1393 0.0165

1B’ 316.7419 0.5084 0.0487 0.0076 0.1423 0.0168
316.7272 0.5018 0.0506 0.008 0.1363 0.0162
316.8205 0.5096 0.0493 0.0077 0.1398 0.0166
316.6187 0.4966 0.0501 0.0079 0.1371 0.0162
316.7746 0.5097 0.0505 0.0081 0.135 0.0161

2B 316.5969 0.4975 0.049 0.0076 0.1426 0.0168
316.7842 0.5064 0.0507 0.0081 0.1372 0.0163
316.6855 0.5028 0.0486 0.0076 0.143 0.0169
316.6795 0.5056 0.0483 0.0075 0.1437 0.0169
316.8187 0.4977 0.05 0.0079 0.1388 0.0165

2B’ 316.7686 0.5085 0.0502 0.0079 0.1382 0.0164
316.6088 0.4984 0.049 0.0076 0.1417 0.0167
316.7152 0.509 0.0504 0.008 0.1373 0.0163
316.6295 0.4988 0.0499 0.0079 0.139 0.0165
316.8592 0.5097 0.0489 0.0077 0.1419 0.0168

3B 316.6279 0.5099 0.0497 0.0078 0.1265 0.015
316.5062 0.5033 0.0501 0.0079 0.1201 0.0143
316.5597 0.5032 0.0484 0.0075 0.126 0.0149
316.5896 0.5015 0.0487 0.0076 0.1234 0.0146
316.6324 0.51 0.0503 0.008 0.1192 0.0142

3B’ 316.4443 0.4997 0.0496 0.0078 0.1242 0.0147
316.5179 0.5009 0.0484 0.0075 0.1291 0.0152
316.3221 0.5306 0.0492 0.008 0.1234 0.0152
316.559 0.4979 0.0489 0.0076 0.1271 0.015
316.5599 0.5041 0.0504 0.008 0.1232 0.0147

Table A.4: Spherical BNL probe data for ABBA cross-calibration with 3He probe.
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Appendix B

Calculations

We provide two calculations in this Appendix. The first is a theoretical calculation to

supplement the experimental measurement of the magnetization dependence of the 3He probe

measured frequencies in Section 6.4.1. The second calculation shows that the magnetic

field shielding inside a spherical shell is proportional to the square of the shell material

susceptibility, which is relevant to the discussion in Section 6.4.2.

B.1 Magnetization Dependence of 3He Frequencies

As detailed in Section 6.4.1, we observed the magnetization dependence of the 3He probe

frequencies to be−0.12± 0.12 Hz when the cell stem pointed orthogonal to the magnetic field

and 0.5 ± 0.4 Hz with the stem parallel to the field. While both of these effects are nearly

consistent with 0, due to the large uncertainties and the opposite signs of the corrections, we

provide a calculation to estimate this effect as a check on the measurement. The magnetic

moment due to the polarized 3He nuclei within the cell stem would be:

µ = Pnµ3V, (B.1)
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where P ≈ 0.4 is the polarization of the gas, n is the number density at 10 Torr (n =

(10/760)2.68x1025 m−3), µ3 = 1x10−26 J/T is the 3He magnetic moment, and V is the

volume of the gas in the stem. We model the stem as a cylinder with an estimated length

of 10 mm and radius of 2 mm. Plugging these into B.1, we find the magnetic field created

by the polarization of the nuclei in the stem:

B =
µ0

4π

µ

r3
≈ 5 x 10−12 T (B.2)

at a distance r = 1 cm away. Hence the perturbation to the field due to the polarization of

the gas in the stem would be on the part-per-trillion scale, equivalent to a frequency shift

of ∆ω/(2π) = (1/2π)γ3B ≈ 0.2 mHz. This shift is independent of the stem orientation,

indicating that the shifts measured due to this effect must also be consistent with 0 for both

stem orientations.

B.2 Magnetic Field Inside a Spherical Shell

Combining Jackson’s Section 5.12, Eqs. 5.118 and 5.121, the ratio of magnetic field within

a spherical shell of permeable material with susceptibility χ can be written [63]:

Bin

B0

=
9(1 + χ)

(3 + 2χ)(3 + χ)− 2a
2

b2
χ2
, (B.3)

where Bin is the field inside the shell, B0 is the field outside the shell (different from Bin

due to shielding), χ is the susceptibility of the shell material, and a and b are the inner and

outer radii of the shell, respectively. Multiplying out the terms and refactoring, we obtain:

Bin

B0

=
9 + 9χ

9 + 9χ+ 2(1− a2

b2
)χ2

=
1

1 +
2(1−a2

b2
)χ2

9(1+χ)

=

[
1 +

2(1− a2

b2
)χ2

9(1 + χ)

]−1
(B.4)
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Since typical values of χ are small (∼10−6), we can apply the binomial expansion (1+x)m ≈

1 +mx to find:

Bin

B0

≈ 1− 2

9
(1− a2

b2
)

1

1 + χ
χ2 (B.5)

Here, we can apply the binomial expansion again to the 1/(1 + χ) term, which yields:

Bin

B0

≈ 1− 2

9
(1− a2

b2
)(1− χ)χ2 = 1− 2

9
(1− a2

b2
)χ2 +O(χ3) (B.6)

This shows that the shielding of the magnetic field inside a spherical shell is proportional to

the square of the shell susceptibility: χ2.
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