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ABSTRACT

There is presently a disagreement between the theoretical prediction and experimental
measurement of the muon’s anomalous magnetic moment, aµ = gµ−2

2
,

a(expt.)µ − a(theor.)µ = (2, 706± 726)× 10−12.

Such a discrepancy could be a signal for new physics. The goal of Fermilab E989 is to make
a more precise measurement of the muon’s magnetic moment to 140 ppb to shed light on the
current discrepancy. Part of the new measurement requires a precision measurement of the
magnetic field averaged by the muon motion as they circulate in a 14 m diameter storage
ring.

This work describes one of two independent analyses of measurements from the magne-
tometer systems to calculate the precision field map in the Run 1 data sets. It also lays
out the framework for averaging the magnetic field in both time and space, weighted by the
muon distribution. The field is precisely mapped using a trolley that carries 17 NMR probes
around the muon storage region. The field’s behavior in the times between the trolley scans
is interpolated using an array of 378 NMR probes positioned around the outside of the muon
storage region. The results are maps of the magnetic field as functions of time and space in
the storage ring. Conservative estimates of the systematic uncertainties are also made for
each data set in Run 1, with suggested improvements in both the data taking methods and
future analyses.
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CHAPTER I

Introduction

Fermilab E989, the Muon g − 2 experiment, represents the efforts of many collaborat-
ing scientists, engineers, and technicians, to perform the most precise measurement of the
muon’s anomalous magnetic dipole moment to date. The experiment is a massive effort with
many parts that must work together, but this work focuses on the aspects of the precision
measurement of the magnetic field and the interpolation of a full field map in which the
author was significantly involved. The experiment collects data in “runs,” with one run per
year, separated by scheduled downtime at Fermilab. Within each run, the data are further
categorized into data sets lasting on the order of days to weeks. This work focuses on the
analysis of the first run. Run 1 nominally covered the 2017–2018 year, but all the production
data sets come from early 2018. At the time of writing, Run 2 has been completed, and Run
3 is about to start data taking.

This chapter explains the motivation for a precision measurement of the muon’s anoma-
lous magnetic dipole moment, aµ = g−2

2
, and provides historical context to the experiment.

Chapter II outlines the principle of measurement and the Standard Model prediction of aµ.
Chapter III begins to cover the various measurements that must be performed simultaneously
to calculate aµ. It also provides an overview of the systems required to make the measure-
ments. Chapter IV focuses on the set of subsystems that are used to make the precision
magnetic field measurement and emphasizes the calibration chain connecting the various
subsystems. Chapter VI explains in detail the author’s algorithm that takes large sets of
magnetometer measurements and interpolates them to produce a magnetic field map over
time and space. Chapter VII goes on to detail how the field map is combined with the muon
distribution to calculate the average magnetic field experienced by the muons while they are
in the storage ring. Finally, Chapter VIII provides details on the systematic corrections and
uncertainties determined from the measurements, calculations, and dedicated systematics
tests. Chapter IX presents the muon-weighted average fields for the main data sets of Run
1, and lays out an outline for the path forward to reach the goals for the uncertainties.

1



1.1 Motivation

The magnetic moment of the electron, often expressed by its g-factor ge or its anoma-
lous magnetic moment ae = g−2

2
, is one of the most precisely measured quantities today

[1]. It provides an unparalleled test of quantum electrodynamics, which shows remarkable
agreement with experiment. As a heavier version of the electron, a muon might be supposed
to have a magnetic moment that is also in agreement with the prediction of the standard
model. However, this turns out not to be the case. Because the muon is approximately
200 times heavier than the electron, it is about 40, 000 more sensitive to effects caused by
off-shell massive virtual particles, including possibly undiscovered particles, such as those
predicted by supersymmetric theories or dark matter candidates. Because of this sensitiv-
ity, when Brookhaven E821, a muon g − 2 experiment, observed a discrepancy with the
Standard Model prediction [2] scientists launched a dedicated effort to improve both the
experimental and theoretical uncertainties, both to confirm the observed discrepancy and to
understand what sort of physics beyond the Standard Model the muon anomalous magnetic
moment could reveal. Fermilab E989 is the successor to Brookhaven E821 and seeks to
reduce the total uncertainty by a factor of four by improving both statistical and systematic
uncertainties.

1.2 History

Since the discovery of parity violation by Lee, Yang, and Wu [3, 4], experimenters have
designed experiments that measure the magnetic moment of the muon by observing the
parity-violating asymmetry in the muon decay to electrons (see Section 3.3 for further dis-
cussion). Early experiments used stopped muons in a magnetic field, which permitted low-
precision measurements of the muon g-factor that provided early evidence that the muon
behaved as a heavy electron [5]. By 1960, the magnetic moment of the muon was measured
precisely enough to agree with the lowest-order prediction of QED [6].

The CERN Experiments

The first experiment carried out at CERN was motivated as a precision test of QED,
beyond the first-order radiative corrections calculated by Julian Schwinger [7]. The exper-
iment was searching for a breakdown of QED at high energies, which would manifest as a
modified anomalous magnetic moment. The experiment used non-relativistic muons, drifting
in a magnetic gradient, that were then stopped, and the forward-backward decay asymmetry
was measured. CERN I measured aµ to the 5, 000 ppm level in 1962 [8]. The main limiting
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factor on its measurement was the 2.2 µs lifetime of the muon that drastically limited the
number of measured muon decays [5].

CERN II improved the low muon lifetime by using relativistic muons. It was the first
muon g − 2 experiment to use a storage ring. Muons were injected with γ = 12.06, which
increased their lifetime in the lab frame to 26.5 µs. The extended lab frame lifetime allowed
CERN II to measure aµ with a precision of 270 ppm [9]. The improvement on the previous
result’s precision by a factor of 20 allowed CERN II to test QED through three-loop level.
However, the low number of stored muons and the background signal in the detectors caused
by putting the pion production target in the ring limited the experimental precision [5].

In CERN II, vertical beam focusing was achieved using magnetic gradients. However,
as precision increased, it became necessary to use a more uniform magnetic field. CERN
III used electric quadrupoles to provide vertical focusing, allowing the magnetic field to be
more uniform. However, electric focusing introduced a new problem. In the fully relativistic
treatment of spin precession in electromagnetic fields, there is a term in the precession
frequency proportional to the external electric field (see Equation 2.7). However, it is possible
to reduce that term to zero (or at least make it small) by choosing a muon momentum such
that

aµ −
1

γ2 − 1
≈ 0. (1.1)

(See Section 2.1.2 for the mathematical formulation.) The solution to this equation is γ =

29.3, which has the added benefit of extending the lab frame muon lifetime to 64.3 µs,
allowing longer measurement times.

Besides the more uniform magnetic field and longer measurement times, CERN III also
improved the particle injection into the ring. Instead of injecting protons, with a pion
production target in the ring, a beam of pions were injected into the ring, which reduced the
background signal in the detectors so the measurement could begin sooner after injection.
These improvements allowed CERN III to measure aµ to 7.3 ppm precision [10]. At this
level, the measurement could be compared to theory, including QED through the three-loop
level plus the hadronic contribution. It was not sensitive to the electroweak contribution to
the theoretical value [5].

Brookhaven E821

The goal of Brookhaven E821 was to observe the electroweak contribution to aµ and any
contributions from new physics. The experiment used the CERN III “magic momentum”
that canceled the electric field contribution and made additional, significant improvements.
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The magnetic field and field measurements systems were improved. The field was much
more uniform, and an array of 378 fixed plus 17 trolley-based NMR magnetometers were
added, including a trolley that could map the field in the vacuum chamber at the location
of the muons. The electric quadrupole focusing was improved, creating a more uniform
muon spatial distribution. Collimators were inserted into the storage ring, which reduced
the dependence of higher-order beam moments in the muon-weighted field average. Finally,
the experiment used direct muon injection with a much more intense beam than at CERN.
Even so, E821 was ultimately statistics limited [5].

The final result from E821 measured aE821µ = 1165920890(640)×10−12 [2], an uncertainty
of 0.54 ppm. Combined with previous experiments, this leads to a current world average of
aexpt. avg.
µ = 1165920890(630)×10−12 [11]. Comparing this to a current theoretical calculation,
atheoryµ = 1165918204(356)× 10−12, there is a difference

aexpt.µ − atheoryµ = 2706(726)× 10−12 (1.2)

between the experiment and theory of 3.7σ [12].

Fermilab E989

The observation of this discrepancy led to the formation of Fermilab E989, dedicated to
driving down the experimental uncertainty. In concert with a coordinated theory effort, the
goal is to confirm or refute the experimental disagreement with the Standard Model. E989
is in many ways a continuation of E821; it evens uses the same magnet, which was shipped
from Brookhaven to Fermilab. The specifics of E989 are covered more fully in this work, but
a general outline of notable upgrades over the previous experiment are listed here:

1. The new experiment takes advantage of the new muon beamline at Fermilab, which
has a purer beam with higher intensity and faster fill rate.

2. The kicker, which puts injected muons onto a stable orbit in the ring, has been up-
graded for a faster kick.

3. The calorimeters used for the decay positron detection have also been improved to
increase sensitivity, especially to muons lost from the ring.

4. Two “straw trackers” have been installed that allow a non-destructive direct measure-
ment of the beam profile during production runs.

5. The magnetic uniformity has been improved, as well as the measurement systems and
algorithms to calculate ω̃p [5].

4



For a more in-depth discussion of these systems, see Chapter III.
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CHAPTER II

Theoretical Background

2.1 Magnetic Moments and Spin Precession

Charged elementary particles, or composite particles of charged constituents, have intrin-
sic magnetic dipole moments (MDMs) directed along the same axis as their spin. MDMs lead
to a rich array of behaviors when the particle is moving through an external electromagnetic
field. The Standard Model can be used to predict the magnitude of the MDMs, and the
agreement between the theory and experiment for the electron magnetic moment is the best
precision test of the Standard Model, with a relative uncertainty on the measurement of the
electron g− 2 of 1.7× 10−13 [11]. For Fermilab E989, the precession of an MDM that is not
parallel to an external field around the field gives us insight into how to measure the MDM.

2.1.1 The Classical Picture

A magnetic dipole in an external magnetic field exhibits several behaviors that one can
measure to probe the properties of the dipole. The potential energy of a dipole in an external
field is

U = −µ ·B, (2.1)

where µ is the magnetic dipole moment and B is the external field, which implies that the
minimum energy occurs when the moment and field are aligned, and the maximum energy
occurs when the moment and field are anti-aligned. There also exists a torque on the dipole

τ = µ×B. (2.2)

In particles, the magnetic moment must lie be along the same axis as the spin, allowing the
expression µ = γS, where γ is the particle’s gyromagnetic ratio and S is its spin. A particle
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at rest has no orbital angular momentum, so the total angular momentum equals its spin.
Therefore, we can write

τ =
dS

dt
= γS×B. (2.3)

The torque is always perpendicular to both S and B, causing the initial spin to precess
about the field with a frequency |ω| = |γB|. An experiment that simultaneously measures
the particle’s spin precession and the external magnetic field can be used to calculate γ.

The gyromagnetic ratio of a particle is an intrinsic quantity, and is defined by γ = g q
2m

where q is the particle’s charge, m is its mass, and g is the “g-factor,” a unitless constant
that arises from the relationship between the particle’s magnetic dipole moment and its spin.
In the classical picture of a spinning ball of charge g = 1, but this turns out to not be correct
for elementary particles.

2.1.2 Relativistic Extension

Spin precession in a magnetic field becomes significantly more complicated than explained
in Section 2.1.1 when we allow for the possibility of an external electric field and consider
relativistic effects. A fully relativistic expression for the spin precession of a magnetic moment
in an external electromagnetic field in the lab frame is [13]

dS

dt
=

e

2m
S×

[(
g − 2 +

2

γ

)
B− (g − 2)

γ

γ + 1
(β ·B)β −

(
g − 2

γ

γ + 1

)
β × E

]
. (2.4)

The first term of this equation, ge
2mc

S×B, is identical to the non-relativistic equation for
the spin precession, so we can consider the other terms to be corrections. All the terms that
are proportional to g come from the motional magnetic field, which is the effective magnetic
field experienced by a particle in its rest frame and is calculated by a Lorentz transformation
from the fields in the lab frame. The terms that are not proportional to g come from the
Thomas precession, which is a relativistic effect coming from the curving path of the particle
in the lab frame. This causes an effective rotational velocity of the particle’s rest frame of

ωT =
γ2

γ + 1

a× v

c2
, (2.5)

where a is the particle’s acceleration, and v is its velocity.
A useful expression that can be derived from Equation 2.4 is for the time derivative of

the projection of the spin along the muon’s momentum. This is essentially the rate at which
the angle between the momentum vector and the spin vector changes, which is important for
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the experimental measurement as explained in Section 3.1. The equation for this quantity is

d

dt
(β̂ · S) = − e

m
S⊥ ·

[
aβ̂ ×B+ β

(
a− 1

γ2 − 1

)
E

]
. (2.6)

Note that, here, a is the anomalous magnetic moment defined in Equation 2.15. The rate of
change of the angle between the momentum and spin vector, called the anomaly frequency
ωa, is therefore

ωa =
e

m

[
aB−

(
a− 1

γ2 − 1

)
β × E

]
. (2.7)

Three important results can be seen immediately from this equation. First, if a particle
had a zero anomalous magnetic moment and were in a magnetic field (but not an electric
field), the anomaly frequency would be zero, meaning that the spin and momentum vectors
would precess at the same rate and the angle between them would be constant. Second, the
term proportional to the electric field can be eliminated by setting(

a− 1

γ2 − 1

)
= 0. (2.8)

For a charged lepton, to first order the anomalous magnetic moment is α
2π

where α ≈ 1/137

is the fine structure constant (see Section 2.2.1). Choosing a momentum such that γ ≈ 29.36

cancels any effect the electric field has on the anomaly frequency, which in this experiment
corresponds to a momentum of 3.094 GeV/c. Third, assuming no contribution from the
electric field term, the anomaly frequency is directly proportional to the product of the
anomalous magnetic moment and the magnetic field. This relationship is the key to under-
standing how the anomalous magnetic moment is measured experimentally (see Section 3.1).

2.1.3 The Quantum Picture

The quantum treatment of the magnetic dipole moment in an external magnetic field
produces the same result for the spin precession. A dipole in an external field (without loss
of generality oriented along the z-axis) has the Hamiltonian

H = −γS ·B =

(
−γ~B/2 0

0 γ~B/2

)
, (2.9)

where the Hamiltonian acts on the 2-state system

ψ =

(
|↑〉
|↓〉

)
. (2.10)
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A state that is a superposition of the up and down spin states (any state with a component
along the x- or y-axis) will have an evolving relative phase between the up and down spin
states at a frequency ω = 1

~∆E where ∆E is the difference in the energies of the eigenstates.
By projecting onto the x and y bases, this evolving phase can be interpreted as the state
oscillating between the spin +x, +y, −x, and −y states. The frequency is ω = γB, recovering
the classical result of the precession frequency as the state precesses around the z axis.
However, neither the classical nor the non-relativistic quantum treatments make a prediction
for the value of g.

q

k k′

µ µ

Figure 2.1: The Dirac vertex function.

The Dirac equation, the relativistic extension of the Schrodinger equation, can be used
to make a prediction for the value of g. To tree-level, the S-matrix element for the scattering
from a classical external field (Figure 2.1) is

iM = −ieū(k′)γiu(k) · Ãi(q), (2.11)

where A = (0,A(x)) is the 4-vector of the external magnetic potential. Taking the non-
relativistic expansion of the spinors through first order in momentum and keeping only the
spin-dependent term, this expression simplifies to

iM = −i(2m) eξ′†
(
−i
2m

εijkqjσk

)
ξ · Ãµ(q). (2.12)

We can identify −iεijkqiÃi = B̃k, where Bk is the magnetic field, which allows the subsitution

iM = −i(2m)
−e
2m

ξ′†σkξB̃k, (2.13)

which we interpret as the Born approximation for scattering from the potential

U = − e

m
S ·B, (2.14)

which is the potential for a magnetic moment in an external field. Setting γ = e/m, we
find g = 2 [14]. Including higher-order corrections adds a small correction to the result g = 2
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that is called the anomalous magnetic moment. The anomalous magnetic moment is often
written mathematically as

a =
g − 2

2
(2.15)

to express that is is a deviation from the tree-level value.

2.2 The Standard Model

The muon anomalous magnetic moment appears in calculations as part of the vertex
function (see Figure 2.2) that describes the interaction between the muon and a photon. At
tree level, the vertex function is [14]

Γµ = −ieγµ. (2.16)

However, when one starts to account for radiative corrections, the physical Γµ picks up
additional terms. Satisfying both Lorentz Invariance and the Ward Identity, a more general
Γ can be written

Γµ(k, k′) = γµF1(q
2) +

iσµνqν
2m

F2(q
2). (2.17)

Here, F1 and F2 are functions of q2 called the form factors. Comparing this to the tree
level result, we see that at lowest order, F1(0) = 1, F2(0) = 0. F1(0) is the electric charge
and F2(0) is the anomalous magnetic moment. Calculating the corrections to the muon
anomalous magnetic moment, therefore, is a matter of calculating the radiative corrections
to the form factor F2(0) [14].

q

k k′

µ µ

Figure 2.2: The physical vertex function.

The Standard Model prediction for the muon anomalous magnetic moment aµ can be
broken up into contributions from different sectors. This is generally written

aSMµ = a(QED)
µ + a(EW )

µ + a(had)µ , (2.18)
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where a(QED)
µ is the contribution from quantum electrodynamics, a(EW )

µ is the contribution
from electroweak theory, and a(had)µ is the contribution from quantum chromodynamics. The
hadronic term further splits into two parts, a(HV P )

µ and a(HLbL)
µ , corresponding to the hadronic

vacuum polarization and light-by-light corrections, respectively; more detailed descriptions
of each of these contributions follow. Table 2.1 summarizes the current state of the field of
standard model calculations. Notice that contributions from QED dominate the anomalous
magnetic moment but are known to the highest absolute precision. The uncertainty is
dominated by the hadronic corrections, due to the difficulty in performing calculations in
QCD.

Contribution aµ (×10−12) σaµ (×10−12)
QED 1165847189.7 0.7
EW 1536 10
HVP 68468 242
HLbL 980 260
total 1165918204 356
expt. 1165920910 632
diff. 2706 726

Table 2.1: Current values for the Standard model contributions to the muon anomalous
magnetic moment and their uncertainties [12]. Also included are the current world average
experimental value, and the difference between experiment and theory [15].

2.2.1 QED Contribution

µ µ

Figure 2.3: The Schwinger term diagram.

The muon g−2 is dominated by QED. This includes all interactions which are composed of
only leptons and photons. The QED contribution, aQED

µ , can be written as a the perturbative
expansion
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a(QED)
µ =

∑
n

(α
π

)n
a(2n)µ , (2.19)

where α is the fine structure constant [16]. The value of a(2)µ is famously 1
2
, calculated by

Julian Schwinger in 1948 [7], leading to a(QED)
µ = 1161409733×10−12 at the n = 1 level (using

the current accepted value of α [11]). It corresponds to the Feynman diagram in Figure 2.3.
The higher loop order diagrams of the sort seen in Figure 2.4 have been calculated through
n = 5 by Kinoshita et al. and found to be a(QED)

µ = (1165847189.7 ± 0.7) × 10−12[16, 17].
This number depends on the value used for α, which can be found in different ways. This
calculation uses a value of α calculated by direct measurements in rubidium [18]. Kinoshita
notes that a more precise calculation of α can be done using the electron g − 2, but that
the theoretical calculation of ae is highly correlated to that of aµ, which requires increased
caution [16].

e, µ, τ
µµ

(a) Muon mass dependent

µ µ

(b) Muon mass independent.

Figure 2.4: Sample µ g−2 two-loop Feynman diagrams for the QED contribution. The mass-
dependent terms are different for the muon compared the electron, because the muon’s higher
mass leads to an enhancement of terms with heavy virtual particles. The mass-independent
terms are the same for both the muon and the electron.

The uncertainty in aQED
µ is driven by uncertainties in the lepton mass measurements and

statistical uncertainties from Monte Carlo integration techniques. However, its contribution
to the uncertainty of the total anomalous magnetic moment is still sub-ppb, which is be-
low the precision of Brookhaven E821, the expected precision of Fermilab E989, and the
uncertainties from the calculations of the other SM contributions to aSMµ .
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2.2.2 Weak Sector Contribution

The electroweak contribution to the total anomalous magnetic moment, a(EW )
µ , covers

all terms that include weak or Higgs bosons. Figure 2.5 shows the two first-order dia-
grams, which correspond to the emission and reabsorption of a neutral boson (Z or H), or
the conversion of the muon into a charged boson (W) and neutrino and their subsequent
recombination.

µ µ

Z, H
µ µ

(a) Neutral bosons

νµ

W W

µ µ

(b) Charged bosons

Figure 2.5: Leading order diagrams for a(EW )
µ .

This contribution is small compared to the total aµ because the virtual bosons are much
heavier than the muon, leading to large suppressing factors on the amplitudes. The SM
contribution has been calculated through second-order [19] and is

a(EW )
µ = (1536± 10)× 10−12. (2.20)

The uncertainty in this calculation is dominated by hadronic uncertainties in the two-loop
diagrams, such as those seen in Figure 2.6. This uncertainty is larger than the QED uncer-
tainty, but it is still small compared to both the experimental precision and the hadronic
calculations’ uncertainties.

2.2.3 Hadronic Sector Contribution

Interactions that include quarks but neither the weak nor Higgs boson are categorized
as hadronic contributions to aSMµ . Although their contribution to aSMµ is small, their uncer-
tainties dominate the total uncertainty, because ahadµ cannot be calculated perturbatively.
Instead, ahadµ must be calculated through other methods. The hadronic contributions are di-
vided into two parts: the hadronic vacuum polarization contribution (HVP) and the hadronic
light-by-light contribution (HLbL).
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ZZ
µµ

had

Figure 2.6: Example EW diagram including hadronic terms.

µµ

had

(a) Hadronic vacuum polarization (HVP)

had

µ µ

(b) Hadronic light-by-light (HLbL)

Figure 2.7: Leading order diagrams for hadronic sector.
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Hadronic vacuum polarization contribution (HVP) The leading-order (LO) con-
tribution to a

(HV P )
µ is shown in Figure 2.7a. HVP diagrams differ from leptonic vacuum

polarization ones because the hadronic loop includes QCD interactions that cannot be cal-
culated perturbatively. Instead, they are evaluated using dispersion relations and experi-
mentally measured cross sections for ee → hadrons. The analysis involves combining cross
section measurements for different hadronic channels from different experiments. Keshavarzi
et al. (KNT18) [12] find the values

a(HV P, LO)
µ = (69326± 246)× 10−12 (2.21)

a(HV P, NLO)
µ = (−982± 4)× 10−12. (2.22)

Other independent calculations are in agreement with these numbers within uncertainty
(DHMZ17 [20], FJ16 [21]). For example, Davier et al. (DHMZ17) [20] find

a(HV P, LO)
µ = (69230± 420)× 10−12. (2.23)

Work on NNLO terms [22] has produced the value

a(HV P, NNLO)
µ = (124± 10)× 10−12. (2.24)

Combining these three contributions yields [12]

a(HV P )
µ = (68468± 242)× 10−12. (2.25)

Efforts are also being made to supplement the dispersion calculation with other methods.
Blum et al. [23] performed a first-principles calculation of the LO HVP via lattice QCD.
Their result had an uncertainty an order of magnitude larger than the KNT18 result and
was consistent within uncertainty. When they supplemented the lattice data at short and
long distances with experimental data as described above, they arrived at a(HV P, LO)

µ =

(69250 ± 270) × 10−12, which is in agreement with and comparable to the KNT18 number.
Additionally, an experiment that can directly measure a(HV P, LO)

µ via µe scattering has been
proposed [24].

Hadronic light-by-light contribution (HLbL) Like the HVP calculation, the HLbL
cannot be calculated with a perturbative approach. Previous calculations of it, such as the
“Glasgow consensus” [25] were highly model dependent, and, unlike the HVP, could not be
calculated using a data-driven approach. Note that the original Glasgow consensus value for
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a
(HLbL)
µ has since been found to contain a small error [21]. A corrected value is [26]

a(HLbL)
µ = (980± 260)× 10−12. (2.26)

There is a significant push by the g − 2 theory community to improve the calculation
of this term. Despite being the smallest contribution to the total value of aSMµ , it has the
greatest uncertainty. Current efforts focus on applying both lattice QCD and dispersion
relations, such as those mentioned used in the HVP calculation. Even though both methods
are significantly more complicated than in the HVP case with more work needed to make a
complete estimate of a(HLbL)

µ , significant progress has already been made [27].

2.3 Beyond the Standard Model

If there are no errors in either the experimental determination of aµ or the calculations
described in Section 2.2, then new “Beyond the Standard Model” (BSM) physics is required
to explain the discrepancy. Despite not having the same level of experimental precision
as the electron anomalous magnetic moment, the muon provides a better testing ground
for BSM physics because effects are typically proportional to m2/Λ2, where m is the mass
of the particle (the electron or muon, in this case) and Λ is the mass scale of the new
physics. There is a relative enhancement of BSM physics in the muon over the electron of
m2

µ/m
2
e ≈ 42, 750 [28]. Many theories exist that can account for the experimental discrepancy

including supersymmetry (SUSY), alternative Higgs, weak theories in a “dark sector”, and
axion-like particles.

Supersymmetry

W̃ W̃

ν̃µ
µ µ

(a) Sneutrino-wino loop

Z̃

µ̃ µ̃

µ µ

(b) Smuon-neutralino loop

Figure 2.8: Sample diagrams involving supersymmetric particles.
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SUSY remains a popular theory for explaining the discrepancy between experimental
results and the Standard Model prediction [28]. It would enter at leading order to the
calculation of aµ through a vertex loop including either a sneutrino-wino loop or a smuon-
neutralino loop as seen in Figure 2.8[28, 29]. Experiments at the LHC have excluded many
regions of parameter space for SUSY theories that can explain the muon g − 2 discrepancy
by excluding mass ranges for the wino and higgsino particles. However, there still exist a
couple of regions that are not excluded by the LHC that could also explain the muon g − 2

[30].

Alternative Higgs

Extensions to the Higgs mechanism can resolve the experimental-Standard Model dis-
crepancy. One simple theory is the two-Higgs doublet model (2HDM), where a second Higgs
doublet leads to more abundant parameter space that could solve not just the muon anoma-
lous magnetic moment discrepancy but also other open questions in high energy physics, like
dark matter and neutrino masses [31, 32]. Other extensions to the Standard Model Higgs
mechanism have also been proposed, such as a light scalar particle arising from the Higgs
mechanism operating in a “dark sector” [33].

Dark Sector

Another extension to the standard model that could resolve the anomalous magnetic
moment discrepancy is the addition of one or more additional “dark bosons” that interact
weakly with the muon. One attractive option would be a dark photon, which has been
the target of many experimental searches [34, 35]. However, at the current time, other
experiments have excluded the region of parameter space where a dark photon explains the
muon’s anomalous magnetic moment [36]. Other dark boson theories exist, though, that
could still resolve the tension between the standard model and experiment [37, 38].

Axion-like Particles

Light spin-0 particles, referred to as axion-like particles (ALPs) can arise naturally in
extensions to the Standard Model. ALPs form a vast class of interactions with many free
parameters that must be set by experiments (see Figure 2.9). The muon g − 2 could prove
to be a sensitive probe of the parameter space for ALP physics [39].
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µ µ

s, a

µ µ

µ

γ s, a

µ µ

Figure 2.9: Leading order diagrams for axion-like particle contributions to aµ. Here s repre-
sents a scalar ALP while a represents a pseudoscalar ALP.
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CHAPTER III

Experimental Overview

3.1 The Required Measurements

The principle behind measuring aµ is demonstrated by Equation 2.7. After choosing
gamme such that the term proportional to the electric field is zero, we can write

ωa = aµ
e

mµ

B. (3.1)

With a measurement of the anomaly frequency ωa and the magnetic field B, and precise
knowledge of e and mµ (the charge and mass of the muon), we could calculate the value of
aµ. It is useful to redefine e and B in terms of other constants, for reasons that will be seen
momentarily.

First, the electric charge of the muon, e, is equal to the electric charge of the electron.
We can rewrite the charge of the electron as

e =
4meµe

~ge
(3.2)

using the definition of the magnetic moment µe of the electron. Then, because the experiment
uses NMR probes calibrated to the shielded proton in water to measure the magnetic field, it
is convenient to write the magnetic field in terms of the precession frequency of the (shielded)
protons

B =
~ω′

p

2µ′
p

. (3.3)

Substituting into Equation 3.1, we can rewrite it as

aµ =
ge
2

mµ

me

µ′
p

µe

ωa

ω′
p

. (3.4)
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The experiment must be run for long periods of time to gain statistical significance.
Therefore, the two measured quantities, ωa and ω′

p must be averages over the data sets. The
measurement of ωa is naturally a statistical average, due to the method used to calculate
it (see Section 3.3). The natural measurement of the magnetic field, however, is based on
a time-dependent field map — a measurement of the magnetic field at all times and points
in the storage ring. The field map must be averaged, weighted by the muon distribution, to
find the average field experienced by a muon during the data set. This weighted average is
generally written ω̃′

p, and so the final equation for aµ is

aµ =
ge
2

mµ

me

µ′
p

µe

ωa

ω̃′
p

. (3.5)

The reason for expressing aµ this way is that each of the first three fractions are unitless
and have been measured at precisions high enough to meet the 100 ppb systematic uncer-
tainty goal for the measurement of aµ (see Table 3.1 for CODATA recommended values).

Constant Value Uncertainty

ge 2.00231930436256 0.17 ppt

mµ

me
206.7682830 22 ppb

µ′
p

µe
0.00151923134 11 ppb

Table 3.1: CODATA recommended values for the constants and ratios in Equation 3.5 [11].

3.2 Muon Injection and Beam Dynamics

3.2.1 Muon Production

π+νµ

sν

mµ

µ+

sµ

Figure 3.1: The decay of the pion at rest produces muons of definite helicity. Notice the
helicity-flipping mass insertion that allows a right-handed chirality µ+ to be produced with
left-handed helicity, conserving angular momentum.

Muons are produced as the primary channel of charged pion decays. The pion decays into
a muon and a muon neutrino, π+ → µ+νµ. Because this decay is mediated by the weak force,
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Uncertainty source E821 (ppb) E989 (ppb)
ωa statistical 460 100
ωa systematics 180 70

ω̃′
p sytematics

Absolute calibration 50 35
Trolley probe calibration 90 30

Trolley measurements 50 30
Fixed probe interpolation 70 30

Muon distribution 30 10
Time-dependent external fields - 5

Others 100 30
ω̃′
p total 170 70
Total 540 140

Table 3.2: A comparison of the final uncertainties from Brookhaven E821 [2] and the pro-
posed error budget for Fermilab E989 [40].

the decay products are naturally polarized. This is because the weak force only interacts
with left-handed particles and right-handed anti-particles. In the case of the positive pion
above, this means that the (near-massless) neutrino will have left-handed helicity. Because
the pion is spin 0, the anti-muon will also have left-handed helicity, to conserve angular
momentum. This is also the reason that pions decay to muons more often than electrons,
despite the electron decay having more phase space available. If the charged anti-lepton
decay product was massless, it would have to be right-handed, making this decay forbidden
through the weak interaction. A massive charged lepton can have a helicity different from
its chirality, but this is mediated through the mass term in the Lagrangian. Therefore, a
more massive muon is more likely to be produced in the parity-violating decay than the less
massive electron. In the lab frame, if one collects only the highest energy muons (the muons
that were boosted along the pion’s trajectory), then their spins will be highly polarized
anti-parallel to their momentum.

Muons are produced in the muon campus beamline at Fermilab (see Figure 3.2). Positive
pions are produced by focusing an 8 GeV proton beam onto a production target. Positive
particles with a momentum within approximately 10% of 3.11 GeV are collected and diverted
into the M2 and M3 lines that capture 3.094 GeV muons from the pion decays. The beam is
diverted into the Delivery Ring, which both provides time for the remaining pions to decay
and for the muons to separate from any remaining protons. The protons are sent to an abort
station while the muons travel through the M4 and M5 lines into the g-2 storage ring [40].
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Figure 3.2: The muon campus beamline at Fermilab, reproduced from [40].
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3.2.2 The Magnetic Storage Ring

Figure 3.3: A cross section of the E989 magnetic storage ring, reproduced from [40]. Note
the C-shaped iron yoke and pole pieces that direct the magnetic flux from the three coils
and concentrate the field at the muon beam.

The magnetic storage rings used for E989 is the same ring that was used for E821,
transported from Brookhaven to Fermilab. The ring uses C-shaped iron yokes to direct
magnetic flux generated by three superconducting loops into a high-uniformity region at a
nominal field of 1.451 T, centered at the muon’s ideal orbit of 711.2 cm (see Figure 3.3).
The magnet includes an extensive shimming kit — a set of passive controls and adjustable
materials that provide fine control over the magnetic field over the full 44.69 m of the
ideal orbit’s azimuth, which will be covered in Chapter IV. The ideal magnetic field would
be entirely directed vertically (in the ŷ-direction), with no azimuthal, radial, or vertical
gradients. The shimming kit is used to achieve this goal within acceptable levels. The field
is controlled over a 9 cm diameter aperture centered on the muon’s ideal orbit, which defines
the muon storage region. Figure 3.4 shows the two main coordinates systems used when
discussing the experiment.

3.2.3 The Electrostatic Quadrupoles

The magnetic field provides a restoring force in the radial direction, focusing the beam
radially. However, it does not prevent the beam from defocusing and being lost vertically.
Rather than use a magnetic field to achieve vertical focusing, which would make measuring
the field experienced by the muons very difficult, electrostatic quadrupoles provide vertical
focusing (see Figure 3.5). The electric field they produce creates a restoring force in the ver-
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Figure 3.4: The two coordinate systems used in this document. Left: The top down view
of the ring in cylindrical coordinates. Right: A view of an azimuthal slice of the ring in
Cartesian coordinates.

Figure 3.5: A cross section of the muon storage region showing the electrostatic quadrupoles,
from quad stations Q2, Q3, and Q4, reproduced from [40]. The yellow lines show the
equipotential lines of the electric field and the blue circle shows the 9 cm diameter muon
storage region. Quad station Q1 has a slightly different configuration to avoid blocking muon
injection.
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tical direction. They also cause defocusing radially, but this is counteracted by the magnetic
force. The combination of the magnetic field and the electrostatic quadrupoles, the stored
beam is contained both radially and vertically.

Ideally, the vertical focusing would be present constantly around the ring corresponding
to a constant electric quadrupole as a function of azimuth (this is actually a common ap-
proximation, the “continuous quad” approximation). However, this ideal setup would require
the high voltage plates to be continuous around the ring, which is impractical for technical
reasons. The quads are instead broken up into four stations the each consist of a long set
of plates and a short set of plates. Overall, the electrodes occupy 43% of the total azimuth
and maintain four fold symmetry around the ring.

3.2.4 Beam Injection and the Inflector Magnet

Figure 3.6: The inflector magnet allows the muon beam to pass through the storage ring
yokes without being deflected and lost. The muons are not directly injected onto the ideal
orbit, and require correction down stream by the kicker magnet.

Muons are injected into the g-2 storage ring in discrete groups called fills. In order to pass
into the storage rings, muons must travel through the magnet yoke and the associated field.
In order to prevent this field from deflecting the incoming muons, an inflector magnet is used
to cancel the main 1.5 T field in the pass through. The inflector magnet must minimally
distort the magnetic field in the storage region. The solution is to use a superconducting
magnet in the pass-through that cancels the 1.5 T field, but has low edge fields. The muon
beam is able to pass un-deflected into the storage region, almost tangentially to the ideal
orbit, without ruining the precision magnetic field on the ideal orbit.
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3.2.5 The Muon Kicker

Figure 3.7: A diagram of the kicker magnet. The kicker (the square) provides an impulse
that redirects the muon momentum along the ideal orbit (black) when they cross over the
ideal orbit from injection (red).

As the muons exit the inflector and enter the storage region, they are displaced outwards
radially 7.7 cm from the ideal orbit. However, the acceptance regions of the storage region
is only 4.5 cm. The fast kicker is a pulsed magnet that provides an impulse to push the
muons onto the ideal orbit. The kicker fires as the muons cross the ideal orbit, and redirects
their momentum to be in a sustainable closed orbit. Ideally, the kick is fast enough that the
muons only experience the field on their first trip through the kicker region and any tails to
the magnetic field are negligible after 20 µs [40].

3.3 Measuring the Anomaly Frequency

The measurement of ωa is accomplished by measuring the projection of the muons spin
along their momentum as a function of time, per fill. The muons’ spin state is detected
indirectly by the momentum of the decay positrons, possible due to the parity-violation of
the weak force. The decay positron momentum is integrated over many muon lifetimes per
fill, and over many fills, and is then analyzed to extract the precession rate of the muon spin
relative to its momentum.
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3.3.1 Muon Decay and Parity Violation

W+

µ+

e+

ν̄µ

νe

Figure 3.8: The dominant muon decay channel.

The dominant muon decay mode µ+ → e+νeν̄µ (see Figure 3.8) is mediated by the weak
force. The weak interaction violates parity symmetry, so this decay has a non-zero correlation
between the spin of the muon and the momentum of the decay positron. Consider the muon
in its rest frame with spin oriented to the right, as in Figure 3.9. The highest momentum
decay positron will correspond to the emission of both decay neutrinos opposite it. Because
the weak force only interacts with left-handed particles and right-handed anti-particles and
the neutrinos are effectively massless, any neutrinos emitted along the same axis will have
opposite spins. To conserve angular momentum, this means that the decay positron’s spin
will be in the same direction as the muon’s spin. Again because of the parity violation of
the weak force, the preferred direction for the emission of the decay positrons will be along
the spin of the muon, so that the resulting positron is emitted with right-handed helicity.
This implies that, in the muon’s rest frame, there is a correlation between the direction of
the decay positron and the spin of the muon at the time of the decay. A measurement of the
positron’s energy and direction is correlated with the spin of the muon at the time of decay.

3.3.2 Calorimetry

In the muon rest frame, the highest energy decay positrons are emitted in the direction
of the muon’s spin. When boosted to the lab frame, the highest-energy decay positrons are
emitted in the same direction as the muon’s travel when the spin and momentum of the muon
are aligned. Likewise, there is a lack of highest-energy decay positrons when the momentum
and spin are anti-aligned. If one measures the number of highest-energy decay positrons as a
function of time, there will be an oscillation that corresponds to the muon’s spin precessing
relative to its momentum. This precession is exactly the precession from Equation 2.7. A
precise measurement of the modulation in the number of highest-energy decay positrons is
a measurement of ωa.
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Figure 3.9: The preferred helicity for a decay positron is right-handed. Therefore, in order
to conserve angular momentum, the highest momentum positrons (in the muon rest frame)
must be emitted along the muon’s spin.

Figure 3.10: A top-down view of the calorimeter positions relative to the vacuum chamber
and muon orbit, reproduced from [40]. The red lines show example decay positron paths that
terminate at the calorimeter (light blue box). The ”‘traceback chambers”’ are populated by
the straw trackers, which are used the reconstruct the muon decay vertex and measure the
beam profile.
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When a muon decays, the decay positron is deflected inward by the magnetic field relative
to the muon’s path because it is lighter than the muon, as shown in Figure 3.10. There are
24 calorimeters positioned along the inner radius of the vacuum chamber to measure the
decay positrons from the stored muon decays. The acceptance of the calorimeter array —
the probability that a decay positron is detected — is about 80% for the highest-energy
positrons that are used in the calculation of ωa.

3.3.3 Anomaly Frequency Extraction

Figure 3.11: The decay positron spectrum as a function of time and decay energy, reproduced
from [40]. The time is modulo a complete period of the anomaly frequency. One can see
there is an abundance of higher energy positrons at time 1090 ns, corresponding to the muon
spin and momentum being aligned, and a deficit at time 3270, corresponding to the muon
spin and momentum being anti-aligned. Therefore, tracking the abundance of high energy
decay positrons over time is a measurement of the frequency of dephasing between the muon
spin and momentum — the anomaly frequency.

The data collected by the calorimeters include the time the positron is detected (relative
to the initial muon injection), its energy, and where on the calorimeter it hit. A straightfor-
ward way to measure ωa from the calorimeter data is to bin the detected positrons by decay
time and energy over many fills. Because the highest-energy positrons carry information
about the spin of the muons (see Figure 3.11), a cut is applied on positron energy such
that only positrons with energy above the threshold are used in the analysis. The resulting
histogram is high energy positron detections as a function of time. A general expression for
the counts as a function of time is

N(t) = N0 exp(t/τ) (1 + A cos(ωat+ φ)) , (3.6)

where N0 is an overall normalization, τ is the muon lifetime in the lab frame, A is the
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asymmetry in the muon decay, and φ is the initial phase of the oscillation. This function
can be fit to the data, and the value of ωa can be extracted.

3.4 Measuring the Muon Spatial Distribution

As the muons circle in the storage ring, they experience many external fields that are
designed to keep them contained. The net effect of these fields fall under the category of
“beam dynamics,” which is the study of how the beam behaves as it travels around the ring.
Many of these effects, such as the coherent betatron oscillations and pitch correction, are
important to the final measurement of ωa and are introduced as systematic corrections to
the measurement described in Section 3.3. However, beam dynamics are combined the the
time-dependent magnetic field map to calculate the average magnetic field, B̃, during the
ωa measurements.

3.4.1 Straw Trackers

The straw tracker system is used to measure the decay positions of the muons in the
storage ring. The time averaged number of decay positrons coming from a unit volume in
the ring is proportional to the time averaged number of muons in that same unit volume.
Essentially, the number of positrons tracked back to a given voxel (volume element) is pro-
portional to the likelihood of finding a muon in that voxel. This allows for a real-time,
indirect measurement of the profile of the stored muon beam. A tracker station is an array
of “straws” filled with gas that lives in the vacuum chamber, just before a calorimeter. As
a decay positron travels through these straws, it ionizes the gas and is detected by charged
wires in each straw. The location of each hit in each straw can be determined, which means
that a positron’s trajectory through the tracker station, before it hits the calorimeter, can
be traced (see Figure 3.10). Using the trajectory and a map of the fringe magnetic field in
the tracker region, the positron’s path can be extrapolated backwards to determine where in
the storage ring it originated. Collecting these positions over the full data set, the trackers
can determine the beam profile.

There are two such tracker stations in the ring, at 180 deg and 270 deg. Each one can
only sample the beam profile from a relatively narrow azimuthal window upstream of it, so
the system only provides beam profile measurements from a single azimuthal position in the
ring. These measurements can be combined with data from the calorimeters and simulations
that use the electric and magnetic fields as inputs to approximate the muon distribution as
a function of azimuth in the ring.
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(a) Top-down view of the straw tracker placement in the vacuum chamber. The blue boxes
outline the modules and the red lines represent the actual rows of straws.

(b) A single straw tracker module.

Figure 3.12: The straw tracker system can trace the path of decay positrons and use them
to reconstruct the muon decay vertex, providing an indirect measurement of the muon beam
profile. Figures reproduced from [40].
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3.4.2 Relationship to the Magnetic Field

The most important effects for the muon-weighted field average, B̃, are: the total number
of muons per fill; the deviations of the center of the muon distribution from the ideal orbit,
called the closed orbit distortion; and the 2D distribution of the muons as a function of az-
imuth, called the beam profile. All three of these are discussed more in depth in Chapter VII,
but are presented here for sake of overview.

The first of these important effects is the distribution in time. This effect accounts for
fills with more or fewer muons, and naturally takes into account times where there were no
muons. It is measured by counting the total number of decay positrons detected within a
unit time. This count is the CTAG count (Calorimeter TAGged count).

The second effect is the closed orbit distortion, which parameterizes how the center of
the muon distribution deviates from the ideal radius. As the muons circulate for hundreds
of turns, only effects that are coherent with the path length won’t average into the 2D
distribution. Therefore, it is convenient to think of the closed-orbit distortion as a Fourier
series expansion of beam center radius as a function of azimuth

R(θ) = R0 +
∑
n=1

An cos(2πθ + θn). (3.7)

In this expansion, R0 is the ideal radius, set by the choices of the magnetic field strength and
muon momentum. The higher-order terms make distortions around this ideal. For example,
the first-order correction is a shift of the circular orbit in the r − θ plane and the second-
order correction is the distortion of the circular orbit into an elliptical orbit. This obviously
couples to the azimuthal magnetic field variations.

The third effect is the 2D beam profile. This is a snapshot of the beam in the r−y plane
at a given azimuthal position. This couples to the 2D map of the magnetic field at the same
azimuthal position, and directly influences how important higher order gradients are in the
determination of the average field. The beam profile is generally a function of azimuthal
position.

3.5 Measuring the Field

A more in-depth discussion of the systems used to measure the magnetic field can be
found in Chapter IV, and the analysis of the data gathered by these systems are the focus of
this dissertation. This section provides a brief overview of those systems and the associated
data analysis in order to lay out the big picture for the reader, before diving into the nuances
of the field.
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3.5.1 The Field Measurement Systems

This experiment uses NMR probes as the primary field measurement devices. NMR
probes only measure the magnitude of the magnetic field, not its direction. Suppose, however,
that the field is large and predominantly constant in a given direction, and that one was
interested in measuring the local deviations. The magnitude of such a field is

B =
√
(B0 + δB)2, (3.8)

where B0 is the constant portion of the field and δB are the small deviations around it.
Allow that B0 is directed in the y-direction. Then

B =
√
B2

0 + δB2 + 2B0yδBy ≈ B0 + δBy. (3.9)

B0 is much larger than the deviations δB, with δBy

B0
< 10−4, then one can drop the higher-

order terms proportional to δB/B0 with a relative error of less than 10−8, and the result is
that the NMR probes measure the large offset field plus the y-component of the deviations.
This is important for two reasons. First, it can simplify later calculations to assume that
the field is primarily oriented in the y direction and that By is equal to the measurements
from the NMR probes. Second, and more importantly, it means that the analysis is largely
insensitive to the radial and azimuthal components of the magnetic field.

There are two primary systems for measuring the magnetic field in the storage ring: the
trolley and the fixed probes. A simple way to think about the two different systems is that
the trolley measures the field densely in space but sparsely in time, while the fixed probes
measure the field sparsely in space but densely in time. The trolley has an array of 17 fixed
probes arranged in concentric circles. It physically lives in the vacuum chamber, and can be
pulled around the ring in the storage region of the muons, taking measurements at thousands
of azimuthal locations as it travels (hence, “densely in space”). However, because it blocks
the muons’ path, it must be withdrawn into a garage during production runs. So as not to
conflict with achieving the statistical precision requirements, the trolley is run approximately
once every three days (“sparsely in time”).

The fixed probe system — an array of 378 NMR probes — serves to fill in the gaps
in time between the trolley runs while muons are present in the ring. The fixed probes
live in grooves on the outside of the vacuum chamber, close to the magnetic pole faces,
not in the actual muon storage region. They are arranged into 72 stations, some with four
probes and some with six, around the ring, roughly spaced at 5 degree intervals (“sparsely
in space”). They continue to take measurements while muons are stored, with each probe
taking a measurement approximately every 1.5 seconds (“densely in time”). Even though
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they do not measure in the muon storage region and do not measure field gradients as well
as the trolley due to higher field gradients near the pole faces, they still provide valuable
information about the field the muons experience while in the storage region.

3.5.2 Measuring a Field Map

Data from the two probe systems must be combined to create a field map, the magnetic
field as a function of time and space in the storage ring. The trolley runs essentially provide
snapshots of the field map at single times. Without the fixed probe system, one could just
interpolate the field between each trolley run. However, due to field drift, which tends to
follow a diurnal cycle, such interpolation would lose accuracy quickly, requiring frequent
trolley runs to stay relevant. The measurements from the fixed probes are used to inform
the shape of the field interpolation between trolley runs. In very broad terms, the time-
dependent field map is constructed by setting the field map equal to the trolley maps at
the trolley run times, and then using the field drift measured by the fixed probes to predict
the field the trolley would have measured if it was there constantly, forming “virtual trolley
measurements” (VTMs). One can think of this process as synchronizing the fixed probe
measurements to the trolley measurements.

The VTMs can only be made at each of the 72 fixed probe stations, with an azimuthal
resolution much less than an actual trolley run. Therefore, they are unable to completely
replace the need for trolley runs, as each fixed probe station will slowly drift out of calibration
due to differential drift around the ring, and drift in higher-order gradients that cannot be
estimated from the fixed probe measurements. From this point of view, each trolley run is
a recalibration of the VTMs.

3.5.3 The Muon-Weighted Average

As explained in Section 3.1, the important number to calculate the anomalous magnetic
moment is not the field map as a function of time and space, but the average field experienced
by the muons while they are in the storage ring. This means we must estimate the muon-
weighted average of the field map over time. The muon-weighted average is expressed as

ω̃′
p =

∫ ∫
dr dt ω′

p(r, t)× ρµ(r, t)∫ ∫
dr dt ρµ(r, t)

. (3.10)

and is discussed in detail in Chapter VII.
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CHAPTER IV

Magnetic Field Measurement Systems

4.1 Magnetic Field Shimming

The magnetic field’s spatial uniformity is adjusted by its shimming kit. The shimming
kit is a set of hardware controls that change the magnetic field locally in an area, and is used
to create a more uniform magnetic field around the ring. The shimming can be broken down
into two categories: the active shims and passive shims. The active shims are the power
supply feedback and surface correction coils, which are covered later. The passive shims all
consist of ways to change the distribution of ferromagnetic material near the storage region.
These shims cannot be adjusted in real time — they require the field to be off to safely
change. Therefore, they are changed rarely, generally only at the beginning of production
data runs. The most important shims are discussed below, in order from coarsest to finest
control of the field, and are shown in Figure 4.1.

Top Hats The top hats are steel plates that rest on the top and bottom of each magnet
yoke. There are two on each the top and bottom per yoke, giving each a 15◦ azimuthal
extent. Spacers are used to adjust the distance between the top hat and the surface of the
yoke. The larger the gap between the top hat and yoke, the more magnetic flux can escape
from the magnet, reducing the dipole field in that region of azimuth.

Pole Pieces The pole pieces are placed in the gap of the yokes, and are used to focus
the field into the vacuum chambers inserted between the pole pieces. Each pole is 10◦ wide,
with three on both the top and bottom of each yoke. The width of the air gap between
the top and bottom poles greatly affects the dipole strength in that region. The poles can
be adjusted vertically by inserting spacers between them and the yoke. Additionally, by
tightening the pole down onto different spacer sizes, the pole itself can be bowed lengthwise
a small amount to help correct for non-uniformities in the pole faces.
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Figure 4.1: A cross section of the magnet (not to scale). The various components of the
shimming kit are labeled, except the foil laminations that are applied directly to the face of
the pole pieces.
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Wedge Shims The wedge shims cover drastically less azimuth with 12 wedges per pole
piece (864 wedges total, 0.83◦ each). They are shaped with more steel at lower radius, and
can be slid in and out of the gap between the yokes and pole pieces. The further in the
wedge is slid, the more magnetic material in the magnetic circuit, and the greater the field
in that area. They are radially asymmetric to help offset the asymmetry of the yoke itself,
which is open to air at lower radius, but have large amount of magnetic material at higher
radius. This also gives the wedges some amount of control over the radial gradient of the
field, and can be used to smooth its azimuthal variations.

Thin Foil Laminations The foil laminations are the finest control on the field. They
consist of small strips of steel foil placed directly onto the pole surface and fixed with G10
fiberglass laminate [41]. They are placed every 0.24◦ on the top and bottom pole, at three
radial locations. The three different radii allow for the shims to correct higher order radial
gradients, like the normal quadrupole and sextupole. Each of the foils was individually
weighed and selected for each position around the ring. Fixed probes are placed near the
the foil laminations, and the local field gradients from the foil can reduce the T ∗

2 time of the
probes, drastically reducing their precision. To address this, in locations near fixed probes,
the foil strip are replaced by “picket fence” laminations, which have similar effects on the
field but don’t create problems with the fixed probe measurements [41].

4.2 The NMR Probes

The magnetic field in the storage ring is measured using pulsed NMR probes. The
protons used for the measurement in the NMR probes, however, are not free. They are in
hydrocarbons in petroleum jelly and are surrounded by the other materials of the probe.
Each of these material effects causes a perturbation in the external field at the proton: there
is diamagnetic shielding from the molecular structure of the hydrocarbons (the chemical
shift), and there is the perturbations to the field from the magnetization of the material
used to construct the probe. For each probe, then, the perturbations must be measured
and corrected in order to get an accurate magnetic field measurement. The perturbations
to the field are measured and corrected in the trolley NMR probes by calibration with the
“plunging probe.”

NMR probes measure the magnetic field by measuring the rate of precision of the proton
magnetic moment in a magnetic field, as described in Chapter II. The protons are prepared
by applying an RF pulse to the sample through a solenoid in each probe. This pulse takes
spins that are aligned with the magnetic field and aligns them orthogonally to the field,
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giving it the name a π/2 pulse. When the spins are orthogonal to the field, they precess.
The changing magnetic flux this precession creates can be detected through the same coils
used to create the π/2 pulse, now being used as a pickup coil. The resulting signal is called
a free induction decay (FID).

The FID can be broadly thought of in two pieces: the carrier wave and the envelope.
The carrier wave is at the frequency of the precession that is the measurement of the field
strength. The envelope is a complicated function of the magnetic environment of the sample.
In general, it is a decaying function, although it can have small rebounds as protons precessing
at slightly different rates go in and out of phase with each other. The decay can be further
broken into three effects with different time constants called T1, T2, and T ∗

2 . T1 is the rate
at which the spins realign with the external magnetic field, returning to their equilibrium
distribution. It is important that T1 be shorter than the time between sequential NMR
measurements to allow the spins time to realign before being excited with another π/2 pulse.
T2 and T ∗

2 both relate to the decoherence of the spins as they precess. T ∗
2 is shorter than T2,

and includes decoherence caused by inhomogeneous magnetic field effects, whereas T2 only
includes the properties of the sample itself. T ∗

2 is the limiting factor in the analysis of the
FID, as a short T ∗

2 causes a short FID with a low number of oscillations of the carrier wave.
This manifests as a larger uncertainty on the extracted frequency and a higher shot-to-shot
variations from the NMR probe.

4.3 Calibration Chain

The precision field measurement requires careful calibration of all of its pieces. A cali-
bration chain through several systems accomplishes this task. Each system is described in
more detail below, but it is helpful to establish a big-picture view before going into details.
The calibration is referenced back to a precise MRI magnet at Argonne National Labs. The
plunging probe, a very precise NMR probe, is studied in the MRI magnet to determine the
perturbations to its measurement, and to create an absolute reference. It is then moved into
the storage ring at Fermilab, where it is moved by a translation stage in the storage region.
The translation stage lets it move into the storage region of the storage ring and sample
different points, while retracting during normal operation.

The plunging probe is used to calibrate each of the 17 trolley NMR probes. While the
trolley is out of the way, the translation stage moves the plunging probe to the XY location
of a trolley probe, and takes a measurement. The plunging probe is retracted and trolley
then moves forward to position its probe in the same location. This is repeated for each of
the 17 probes, transferring the plunging probe calibration from the plunging probe to the
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trolley. During each trolley run, the calibrated trolley is used to measure the correlation
between the field moments measured by the trolley and those measured by the fixed probes.
This process is called “synchronization.”

4.4 Absolute Calibration

The absolute calibration system consists of two primary parts: an NMR probe whose
perturbations and material effects are very well know, called the absolute probe, and an NMR
probe attached to a translation stage that can place its active volume in specific locations,
called the plunging probe. There are two primary absolute probes based on different samples.
The first is a water sample that used the magnetic moment of the protons in the water to
measure the magnetic field. The other probe used the magnetic moment of the helium-3
nucleus to measure the magnetic field, using the same principles. The two separate absolute
probes provide independent measurements of the field with different systematic effects, and
can be used to cross-check each other. Both absolute probes are crafted with minimizing
the perturbations to the measured frequency in mind. They are also characterized precisely
to understand the remaining perturbations and to allow corrections on the measurement to
calculate the true field to high precision [42].

The plunging probe is also stringently characterized and corrected. It is used to transfer
the calibration from the absolute probe to each of the 17 trolley probes. It is attached
to a translation stage that inserts in into the storage region at the x-y position of a given
trolley probe. It takes a measurement, and then is backed out of the storage region while
the trolley is moved up to position the given probe at the same azimuthal location to take
a measurement. Then the trolley backs out and the plunging probe is reinserted. This
procedure (called an ABA measurement) is repeated several times in order to correct for
field drifts during the calibration procedure. Then the same ABA measurement procedure
is used on the remaining 16 probes to find the calibration constants for each one relative to
the plunging probe, shown in Table 4.1. The calibration program takes several days without
muons, so it is only done between production data runs.

4.5 Trolley

The trolley is the primary system used for making field maps as a function of spacial
coordinates. It is a self-contained unit that rides on rails inside the vacuum chamber, pulled
by two lines to facilitate upstream and downstream motion. One of the cables is a nylon
“fishing” line, but the other is the signal cable that carries power and the reference frequency
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Trolley probe Calibration relative to probe 1 (Hz)
1 0.00
2 -5.59
3 4.18
4 -1.84
5 2.62
6 15.17
7 29.25
8 -12.49
9 -5.87
10 -65.93
11 86.21
12 20.98
13 33.14
14 -12.36
15 -14.45
16 -69.84
17 80.06

Table 4.1: The calibration values for the trolley probes, relative to the center probe [43].

garage

drive

θ = 0

Figure 4.2: A top down view of the storage ring with the three steps of a standard trolley
run. The first step is black (outer path), the second step is red (middle path), and the third
step is blue (inner path). The second step is the step used for synchronization.
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signal to the trolley, and provides a communication channel between the trolley microcon-
troller and the frontend computers. The cables pull the trolley around the ring during special
trolley runs, during which there are no muons in the ring. A typical trolley run consists of
three parts: a clockwise run downstream from the trolley garage to the trolley drive motors
(about 90 deg), a counterclockwise run upstream from drive to drive (about 360 deg, includes
some overlap to ensure closure), and a clockwise run from the drive back to the garage (about
270 deg). The trolley collects data from all three parts, but generally only the continuous
data from the full cycle is used in the analysis.
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16

1.75 cm

3.5 cm

R

Figure 4.3: The trolley probe positions. The probe 0 is nominally on the muon ideal orbit.

The trolley collects data continuously while it is in operation. For the analysis, the
most important data it collects are the field (frequency) measured by each of its 17 NMR
probes, and its azimuthal position in the ring. The 17 probes are arranged in concentric
circles, with one probe in the middle at nominally the muon ideal orbit, 4 probes at 1.75 cm

radius, and 12 probes at 3.5 cm radius. The probes are read out sequentially, with the full
measurement from all 17 probes taking just under a second to collect. This means that the
trolley probes each take slightly more than one measurement per second, but they do so at
different positions.

The trolley measures its azimuthal location in two ways. The simpler way is by using
encoders on the drive motors to record how much the cables have been pulled. This method
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creates a large uncertainty in the trolley position because of the elasticity and length of the
cables. However, the trolley is also equipped with optical barcode readers. The bottom
of the interior of the vacuum chamber is marked with two different barcodes: the absolute
barcode and the reference barcode. The absolute barcode encodes positions every 20 cm

and are used to locate the trolley in the ring, while the reference barcode has a mark every
2.5 mm and is used to interpolate positions between the absolute marks. The two azimuthal
position measurements are combined, using the reliability of the encoder and the precision
of the barcode to interpolate the trolley position at all times with an accuracy of 1 mm [44].

4.6 Fixed Probes

1 2 3

4 5 6

15.4 cm

3 cm 3 cm

x̂

ŷ

Figure 4.4: The standard geometry of a 6-probe station. In a standard 4-probe station, the
probes numbered 1 and 4 are not present. There are non-standard 6-probes stations in the
inflector chamber (stations 0-5) that have every probe shift radially inward by 1 cm, and
non-standard 4-probe stations that are missing probes 1 and 6. See Chapter V for more
details.

The fixed probe subsystem is an array of 378 NMR probes attached to the outside of
the vacuum chambers. They are arranged into 72 stations of either 4 or 6 probes (see
Figure 4.5 for a diagram of the stations’ azimuthal distribution), evenly split between the
top and bottom of the vacuum chamber. The probes are vertically displaced above and
below the muons’ ideal orbit by 7.7 cm. In most of the 6-probe stations, the probes are
spread horizontally at (−3 cm, 0 cm, 3 cm) with respect to the muon ideal orbit, while most
of the 4-probe stations are at (0 cm, 3 cm). Note that the 4-probe stations are not centered
on the ideal orbit. There are six 6-probe stations, located near the inflector where muons
enter the storage ring that are displaced 1 cm inward to (−4 cm,−1 cm, 2 cm). There are
also three 4-probe stations where the top and bottom probes are not symmetric; the top
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Figure 4.5: The azimuthal locations of the fixed probe stations, labeled by station number.
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probes are at (0 cm, 3 cm) and the bottom probes are at (−3 cm, 0 cm).
Because the fixed probes are closer to the magnet’s pole faces and the foil lamination

shims, they experience higher field gradients than the trolley probes. This could cause some
probes to be unreadable, with T ∗

2 times shorter than can be analyzed, which would make them
them useless. An attempt was made during the shimming process to reduce the gradients
caused by the laminations at the fixed probes by using a “picket fence” lamination near
the fixed probes. This worked very well, but for three stations near the inflector (stations
1, 3, and 5), the picket fence was not properly aligned with the vacuum chamber. This
misalignment causes the FIDs from the probes in those stations to be significantly shorter
and the frequency extraction to be significantly noisier, but ultimately still readable when
averaged over long times and many FIDs.

Also of special note is station 54. This station is located near the trolley drive, and is
where the trolley starts and ends its full 360 deg runs. Even though there is overlap between
the beginning and end of the trolley run, meaning that the trolley run covers the whole
ring, the full extent of the station (the extent is defined by the halfway points to the nearest
neighboring stations, about 5 deg of azimuth total) is not double-covered, meaning that the
full station coverage is split between the beginning and end of the trolley run, separated
in time by about an hour. As explained in Chapter VI, this separation requires special
consideration during analysis, because, as opposed to other stations where the trolley covers
the full extent in about 40 seconds, the long time to cover all of station 54 means that field
drift over time becomes non-negligible.

4.7 Power Supply Feedback and Surface Correction Coils

The power supply feedback (PSFB) and surface correction coils (SCC) subsystems are
active subsystems. Both supply currents to coils to create small corrections to the magnetic
field. The PSFB changes the current in the main, superconducting magnet coils by small
amounts to change the average (dipole) field. The SCC controls currents in 200 individual
loops attached to the top and bottom pole faces (100 per face) to control the azimuthal
average of the gradients of the field. The SCC can also correct the average radial field,
which is useful for vertically centering the muons. The fixed probe system feeds back on
the PSFB continually to combat global field drifts caused by environmental changes, but
the SCC does not experience feedback because there is no continuously-monitoring system
that can currently provide the level of precision necessary for feedback on the SCC settings.
Instead, the SCCs are set to minimize the azimuthal average of the higher order moments.
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4.8 Fluxgate Magnetometers

The fluxgate magnetometers are the only routinely-used non-NMR magnetometers. A
fluxgate works by using the saturation experienced by ferromagnetic materials in an external
magnetic field. A core of magnetic material is wrapped with two coils. One coil drives an
alternating current in the core and the second picks up the resulting changing magnetic flux
in the core. An external field offsets the AC field driven by the first coil causing saturation
that is different for the positive and negative phases of the AC cycle. The voltage across the
second coil is proportional to the rate of change of the core magnetization, which is zero when
the core is saturated. By comparing the waveforms of the first and second coils, it is possible
to calculate when the core reached saturation and therefore what the external magnetic field
is. This also explains the main limitation of fluxgates: if the external field is too large, then
the core will always be saturated, regardless of the alternating current. Therefore, fluxgates
can only be used in low-field environment. The fluxgates used for this experiment have a
maximum range of ±10 Gauss, which prevents them from getting too close to the magnet.
Instead, they live just outside the 5 G line, the region where the magnetic field is under 5
Gauss.

Despite this limitation, fluxgates have some distinct advantages over NMR probes for
measuring magnetic fields. Most notably, a single fluxgate is most sensitive to the external
field component aligned with its core’s axis. By placing three of the cores mentioned above
into one device, all mutually orthogonal, the fluxgate can measure all three components of
the field, as opposed to NMR probes that can only measure the magnitude of the field.
Fluxgates also have a larger bandwidth than NMR probes; whereas the NMR probes in this
experiment only take a measurement approximately every one second, the fluxgates can take
over 1000 samples per second. This makes the fluxgates sensitive to faster time-dependent
transient such as the 60 Hz noise from the electronics, and to shorter duration transients.
These two advantages make the fluxgates very useful for identifying sources of external field
transients.

There were four Bartington Mag690-1000 fluxgates (see Figure 4.6 for reference picture)
in use during Run 1. An additional four fluxgate magnetometers were installed before Run
2 in August 2018. They were positioned on the concrete floor beneath the false-floor in the
center of the magnet, approximately 2 m towards the center of the ring from the storage
region and positioned at roughly φ = 0, 90, 180, 270 deg in azimuth, as shown in Figure 4.9.

The fluxgates are instrumented to a custom power supply/conditioning unit (PS/CU)
that provides power and filters the signal from the fluxgates. The input is passed through a
Sallen-Key low pass filter [45] with a roll-off frequency at 2.3 kHz (corresponding to a Nyquist
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Figure 4.6: A Bartington Mag690-1000 fluxgate used in the experiment. Sharpie for scale.

frequency of 1.2 kHz). This frequency was chosen to align with the fluxgate’s bandwidth
of DC to >1kHz. The PS/CU also includes options for AC coupling the signals with high
gain to observe higher frequency transients. The AC coupling is a Sallen-Key high pass
filter with a roll-off frequency at 1.1 Hz. This frequency was chosen to remove the large
(order 1 V) DC offsets from the fluxgate signal without attenuating the signals of interest,
particularly at 60 Hz. See Figure 4.7 for the schematic and Figure 4.8 for the board layout
of each circuit board. Each board supports two of the three-axis fluxgates and outputs 6
channels per fluxgate, a DC and an AC coupled signal for each of the three axes. The AC
channels can have higher gain to increase the dynamic range for higher-frequency signals.
The conditioned signals are digitized by a National Instruments PCIe-6259 ADC, with 32
AI channels with 16 bit resolution.

Not every channel is digitized. All the DC coupled channels are digitized, but only the y-
axis (corresponding to the axis of the ring, vertically) AC coupled channel is saved. For each
channel, data is acquired in 15 second events. For each event, two waveforms are saved. The
first is a binned-and-averaged waveform with 1 second bins, to track the slow, DC behavior
of the fluxgate. The second is an FFT in steps of 1 Hz from DC up to 1 kHz. This waveform
is used to track the faster transients over time.

The analysis of the fluxgate data is largely done by eye. The digitized waveforms and their
Fourier transforms can be monitored in close-to-real time as well as in later analysis. This
allows for studies where other systems, such as the cryogenics or ring monitoring systems, are
changed to observe the effect on the magnetic environment of the ring. One such program was
performed in 2015 when both the fluxgates and the fixed probe systems detected a transient
with a period of four minutes and an amplitude on the order of mG (10−7 T, about 100 ppb)
in the ring (see Figure 4.10). The period and duty cycle closely matched the acquisition
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Figure 4.7: The circuit diagram for the fluxgate power supply and conditioning unit. Each
board (shown) supports two fluxgates with 3 channels each. The boxed areas represent a
single quad op amp IC.
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Figure 4.8: The circuit board for the fluxgate power supply and conditioning unit — top
layer left, bottom layer right. Each board (shown) supports two fluxgates with 3 channels
each.

rate for strain gauges that monitor forces on the coils. The strain gauges were changed to
a three minute cycle, and the period detected by the fluxgate changed correspondingly. We
started a program of turning off banks of strain gauges and monitoring the field detected by
the fluxgates in real time. Doing so, were were able to isolate the strain gauges that were
malfunctioning and creating the transient field so they could be fixed.
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Figure 4.9: A top-down schematic of the positions of the fluxgates in the ring in Run 1. The
Xs show where the additional fluxgates were added to the ring in Run 2.
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Figure 4.10: A July 2015 study with the fluxgates found a periodic signal of T = 4 min in
the ring. This study demonstrated their ability to track down sources of stray fields.
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CHAPTER V

Moments of the Magnetic Field

The raw field data from the trolley and fixed probes are sets of field data at known
positions in the X-Y plane of an azimuthal slice. Therefore, we can measure the spatial
dependence of the field in 2D slices. A simple, powerful way to do this is to consider moments
of the field. The moments are an equivalent basis that encodes the spatial distribution of
the field. They can also be thought of as the derivatives of the field. This chapter introduces
two basis sets of field moments, the multipole moments for the trolley geometry and the
Cartesian moments for the fixed probe geometries, and the relationship between the sets of
moments.

5.1 Definition of Field Moments

The 2D multipole moments arise as solutions to the Laplace equation in cylindrical
coordinates, assuming no dependence on the z-axis. Assume a magnetic scalar potential
V (r, θ) that does not depend on the z coordinate. In this case, we are considering a single
slice of azimuth. Note that, in this case, the r coordinate is not the radial coordinate of the
storage ring, but the radial displacement from the muon ideal orbit. Likewise, θ is the polar
coordinate about the ideal orbit. Laplace’s equation for this potential is

1

r

∂

∂r

(
r
∂V

∂r

)
+

1

r2
∂2V

∂θ2
= 0. (5.1)

One must consider three constraints on the solution to this equation: first, the solution
must be well-defined at r = 0 to be physical; second, constant offsets do not matter in
the potential; and third, the solution must be periodic in theta. The general solution that
satisfies these restrictions is

V (r, θ) = cθ +
∑
n=1

rn(an cos(nθ) + bn sin(nθ)). (5.2)
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The magnetic field is defined as the gradient of the scalar potential. In polar coordinates,
they are

Br = −∂V
∂r

= −
∑

n=1 nr
n−1(an cos(nθ) + bn sin(nθ)) (5.3)

Bθ = −1

r

∂V

∂θ
= − c

r
−
∑

n=1 nr
n−1(−an sin(nθ) + bn cos(nθ)). (5.4)

c must be zero in order for the field to be well-defined at the origin. It is convenient at this
point to calculate the field components along the x and y directions (radial and vertical in
the storage ring basis). The final results for the field components are

By = A0 +
∑

n=1

(
r
r0

)n
(An cos(nθ) +Bn sin(nθ)) (5.5)

Bx = −B0 +
∑

n=1

(
r
r0

)n
(An sin(nθ)−Bn cos(nθ)) (5.6)

where we have taken the liberty of introducing a radial normalization term (4.5 cm for E989)
and absorbing constants into the An and Bn parameters, called the “multipole strengths.”
The An parameters are called the normal multipole strengths and the Bn parameters are
the skew multipole strengths. These are often written as “normal/skew (2n+2)-pole,” like
the “normal 2-pole (dipole),” “skew 6-pole (sextupole),” or “skew 14-pole.” See Figure 5.1
for visualizations of the first several multipole moments.

5.1.1 Measuring Multipole Moments

Because the NMR probes used to make field measurements only measure the scalar field
and the deviations in the field ride on a large offset field in the y-direction, the NMR probes
predominantly measure only the By component, shown in Figure 5.2.

By = A0 +
∑
n=1

(
r

r0

)n

(An cos(nθ) +Bn sin(nθ)) (5.7)

All of the probes are mixed down with a 61.74 MHz reference signal (the field is nominally
61.79 MHz), meaning the the readout frequency is about 50 kHz for each probe. The
relatively small variations around this value can then be fit to the multipole expansion,
essentially causing a change of basis from the probe basis to the multipole moment basis.
This procedure is especially well suited to measurements made by the trolley where the NMR
probes are arranged optimally to measured the radial and angular dependence of the field in
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Figure 5.1: The first four multipole moments, both normal and skew (arbitrary units).
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Figure 5.2: The By component of first four multipole moments, both normal and skew
(arbitrary units).
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an azimuthal slice. The fixed probes are not well-arranged to measure in the 2D multipole
moment basis, and require a different treatment.

A simple way to calculate the multipole strengths for a measurement consisting of a
frequency from each of the trolley’s 17 probes would be to simply fit the measurements to
the analytic form for By above, with some cutoff on n. However, another way is realized by
considering the set of trolley probe measurements and the set of multipole moments as two
separate bases, and determining a change-of-basis matrix between the two. The change-of-
basis matrix from the multipole basis to the probe basis is easy to determine — it simply
requires the evaluation of Equation 5.7 at each probe’s (r, θ) coordinate.

Because there are 17 trolley probes, a naive assumption would be that the trolley is
sensitive to the first 17 multipoles. However, this is not true. Because the probes measure a
discrete set of points, there is a spatial Nyquist frequency associated with the measurement.
For the most part, this isn’t an issue because the inner and outer rings of 4 and 12 probes
respectively have different Nyquist frequencies (the 6-pole and the 14-pole are the Nyquist
frequencies, respectively), and the rn dependence of the moments means that moments with
similar polar profiles can be distinguished by their radial profile. However, there are two
distinct cases where this is not true. The first is the skew 14-pole, which has nodes at each of
the 17 trolley probes, corresponding to a column of zeros in the moment-to-probe change-of-
basis matrix. This makes it essentially invisible to the trolley, and therefore unable to be fit
(see Figure 5.3). The second case involves the skew 10-pole and skew 18-pole. Both of these
probes have the same profile in the outer ring of trolley probes; the skew 18-pole aliases over
the Nyquist frequency to appear as the skew 10-pole. In other cases where this occurs — for
example, the 16- and 12-pole — the inner set of probes can measure the moment as well, so
the r dependence can be used to determine both component uniquely. However, in the case
of the 10- and 18-pole, the inner probes are all at nodes for both multipoles (see Figure 5.4).
In the change-of-basis matrix, this corresponds to two columns that are multiples of each
other. Luckily, the issue occur at relatively high n moments and their contribution to the
measurement of ω̃p are suppressed in importance by the small size and symmetry of the
muon profile.

If the 17 by 17 moment-to-probe change-of-basis matrix had all linearly independent
columns, calculating the probe-to-moment change-of-basis matrix would just involve invert-
ing it. Due to the two issues outlined above, we instead define a 17 by 15 matrix that takes the
first 15 linearly independent moments to the 17 trolley probes. The inverse change-of-basis
matrix can then be calculated by taking the pseudoinverse. The pseudoinverse of a matrix
is the matrix A† that best fits ~a = A†~b given A~a = ~b. In this respect, the change-of-basis is
still a fit. However, doing it this way provides significant computation time improvements,
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Figure 5.3: Every trolley probes sits at a node of the skew 14-pole, making it effectively
invisible to the trolley.

Figure 5.4: The inner five trolley probes sit at nodes of both the skew 10- and 18-poles. The
outer rings measures a pattern with the same signature (zero, high, low, zero, high, low...).
The two moments are indistinguishable to the trolley. Note: In the plot of the skew 18-pole,
the multipole strength has the opposite sign of the skew 14-pole plot.
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and standardization and transparency of the method, as well as respecting and highlighting
the viewpoint that the probe measurements and multipole moments are just two different
representations of the same physical object.

5.1.2 Cartesian Moments

The fixed probes are not arranged symmetrically in a polar coordinate system, but they
do exhibit good symmetries in a Cartesian coordinate system. This is the inspiration for
writing Cartesian field moments, which we will see are fairly analogous to the multipole
moments. There are two equivalent ways of thinking about the Cartesian moments. They
can be considered from the continuous perspective as the derivatives of the field, specifically
as the x and y derivatives of By. Then one can use the fixed probes to make discrete estimates
of the gradients. The moments can also be considered from the discrete perspective as just
sum and difference modes of the fixed probes. Given the correct constants, these are identical
treatments. Since the first method is easier to intuit physically, this treatment will follow it.

N r, θ x, y

0 normal A0 A0

1 normal A1
r
r0
cos(θ) A1

1
r0
x

1 skew B1
r
r0
sin(θ) B1

1
r0
y

2 normal A2

(
r
r0

)2
cos(2θ) A2

(
1
r0

)2
(x2 − y2)

2 skew B2

(
r
r0

)2
sin(2θ) 2B2

(
1
r0

)2
xy

3 normal A3

(
r
r0

)3
cos(3θ) A3

(
1
r0

)3
(x3 − 3xy2)

3 skew B3

(
r
r0

)3
sin(3θ) B3

(
1
r0

)3
y(3x2 − y2)

...

Table 5.1: The first several multipole moments written in Cartesian coordinates.

Consider Equation 5.7. It can be written as a function of x and y, instead of r and θ,
by using the multiple angle formula and the relationships x = r cos(θ) and y = r sin(θ).
The first several multipoles written in Cartesian coordinates, ignoring the skew dipole that
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is unmeasurable due to only having a Bx component, are shown in Table 5.1. Written in
terms of polynomials, it is easy to see that the Cartesian derivatives evaluated at (0, 0)

— the nominal center of the storage region — can recover the multipole strengths. Due
to the geometry of the fixed probes at each station, only a few of the derivatives can be
approximated. Table 5.2 shows the results of each of these derivatives evaluated at (0, 0).
Given the discrete positions of the fixed probes, it is possible to estimate the values for these
derivatives at the center.

Derivative Value @ (0, 0) Note

By A0

∂By

∂x
A1

r0

∂By

∂y
B1

r0

∂2By

∂x∂y
2B2

r20

∂2By

∂x2
2A2

r20
6-probe stations only

∂3By

∂x2∂y
8B3

r30
6-probe stations only

Table 5.2: The Cartesian derivatives measurable given the fixed probe geometry. Unless
otherwise noted, both the 4- and 6-probe stations can measure these derivatives.

With the moments defined in both a convenient basis for the trolley measurements (the
polar multipole moments) and a convenient basis for the fixed probe measurements (the
Cartesian derivatives evaluated at (0, 0)), and the relationship between the two, it is conve-
nient to define a vector of measured moments, m. m has at most 17 elements in the trolley,
and at most 6 (4) elements in a 6-probe (4-probe) station. In reality, we tend to only be
concerned with the first 8 elements of mtr, and include the others to ensure proper fitting
for the lower order moments. If we define the elements of each size vector well, then there
will be a correspondence between the elements of each. The proper definition is shown in
Table 5.3.

The full equations and resulting change-of-basis matrix for a standard 4-probe station,
with the geometry seen in Figure 5.5, is worked out here. The change-of-basis matrices for
the other geometries are listed, but not explicitly worked out. Note that the 4-probe station
is not symmetric around (0, 0). This requires a correction after the calculation to account
for the shift to center. The first term, m1 is already centered in this treatment, however.
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Name Trolley 6-Probe Station 4-Probe Station

m1 Dipole A0 By|0 By|0

m2 Normal Quadrupole A1 r0
∂By

∂x

∣∣∣
0

r0
∂By

∂x

∣∣∣
0

m3 Skew Quadrupole B1 r0
∂By

∂y

∣∣∣
0

r0
∂By

∂y

∣∣∣
0

m4 Skew Sextupole B2
r20
2

∂2By

∂x∂y

∣∣∣
0

r20
2

∂2By

∂x∂y

∣∣∣
0

m5 Normal Sextupole A2
r20
2

∂2By

∂x2

∣∣∣
0

m6 Skew Octupole B3
r30
8

∂3By

∂x2∂y

∣∣∣
0

m7 Normal Octupole A3

m8 Normal Decupole A4

m9 Skew Decupole B4

m10... ...

Table 5.3: The moment ms, and their corresponding definitions for the trolley and both
4- and 6-probe stations. Note that the (normal, skew) pattern is reversed (skew, normal)
forn = 2, 3, the sextupoles and octupoles. This switch takes into account the moments that
are measurable by the fixed probe stations and preserves the mapping between different m
vectors.
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Figure 5.5: The geometry of a 4-probe station. Not drawn to scale.

m1 =
1

2
(ω1 + ω2) (5.8)

m2 =
1

2

(
ω2 − ω1

3 cm
+
ω4 − ω3

3 cm

)
× 4.5 cm (5.9)

m3 =
1

2

(
ω2 − ω4

15.4 cm
+
ω1 − ω3

15.4 cm

)
× 4.5 cm (5.10)

m4 =
1

15.4 cm

(
ω2 − ω1

3 cm
− ω4 − ω3

3 cm

)
× (4.5 cm)2 (5.11)

m = Θω (5.12)

Θ4 =


0.5 0 0.5 0

−0.75 0.75 −0.75 0.75

0.146 0.146 −0.146 −0.146

−0.219 0.219 0.219 −0.219

 (5.13)

The other change-of-basis matrices are calculated similarly (see Figures 5.6, 5.7, 5.8, 5.9).
Figure 5.10 shows the trolley change-of-basis matrix.
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1 2 3

4 5 6

15.4 cm

3 cm 3 cm

x̂

ŷ

Θ6 =


0.1667 0.1667 0.1667 0.1667 0.1667 0.1667
−0.375 −0.0 0.375 −0.375 −0.0 0.375
0.0974 0.0974 0.0974 −0.0974 −0.0974 −0.0974
−0.1096 −0.0 0.1096 0.1096 −0.0 −0.1096
0.5625 −1.125 0.5625 0.5625 −1.125 0.5625
−0.6575 1.3149 −0.6575 0.6575 −1.3149 0.6575



Figure 5.6: The geometry of a 6-probe station, and the corresponding change-of-basis matrix
for measurements-to-moments.
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Θ4 =


0.5 0.0 0.5 0.0

−0.75 0.75 −0.75 0.75
0.146 0.146 −0.146 −0.146
−0.219 0.219 0.219 −0.219



Figure 5.7: The geometry of a standard 4-probe station, and the corresponding change-of-
basis matrix for measurements-to-moments.
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Θ∗
4 =


0.5 0.0 0.0 0.5

−0.75 0.75 −0.75 0.75
0.146 0.146 −0.146 −0.146
−0.219 0.219 0.219 −0.219



Figure 5.8: The geometry of stations 37 and 39 (4-probe stations), and the corresponding
change-of-basis matrix for measurements-to-moments.
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15.4 cm

3 cm

3 cm

x̂

ŷ

Θ∗∗
4 =


0.0 0.5 0.0 0.5
0.75 −0.75 −0.75 0.75
0.146 0.146 −0.146 −0.146
0.219 −0.219 0.219 −0.219



Figure 5.9: The geometry of station 41 (4-probe station), and the corresponding change-of-
basis matrix for measurements-to-moments.
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5.2 The Jacobian Matrix

As covered in Section 5.1, the trolley and fixed probe systems measure moments of the
By field in different bases, respecting the different symmetry of the geometry of each set of
probes. The prescribed treatment shows that the two different sets of moments are equivalent
if the moments can be calculated perfectly. However, because they are calculated as discrete
approximations, the two sets are not identical and one must take steps to convert between
one set and the other. We write the linear part of a Taylor expansion of trolley moments as
a function of the fixed probe moments,

mtr(t) ≈ mtr
0 +

∂mtr

∂mfp
·
(
mfp(t)−mfp

0

)
. (5.14)

The trolley measures 14 of the first 17 multipole moments well (as discussed in Section 5.1)
and, as the best measurement of the field in the muon storage region we have, is taken to
be the “gold standard.” The above equation shows that, in order to understand how the
(measured) multipole moments change as a function of the measured Cartesian moments
changing, we must calculate the Jacobian matrix Jij between the two,

Jij =
∂mtr

i

∂mfp
j

. (5.15)

5.2.1 Calculating the Jacobian Matrix

To calculate the Jacobian defined by Equation 5.15, two assumptions must be made.
The first assumption is that the trolley accurately measures the multipole moments defined
in Equation 5.7. This assumption breaks down when there are many higher-order moments
present in the real field (n = 10 and above, corresponding to the 22-pole and higher), as the
higher-order moments alias into the measurement of the lower-order moments as discussed
for the skew 10- and 18-poles. However, these higher order moments are largely suppressed
in this experiment by the symmetry of the magnet, which, to large degree, does not have
the n = 10 and higher structures that would generate such multipoles. Additionally, these
moments are further suppressed in the actual muon storage region by their rn dependence.
At higher radii, such as where the fixed probe sit, these moments can become non-negligible,
leading to Concept 1.

The second assumption is that, because both sets of moments are calculated by linear
combinations of the measured magnetic field that is itself a linear object, the dependence
between the trolley and fixed probe moments must also be linear. This means that we only
need to calculate the relationship between the basis vectors m1,m2...m5 of the trolley and
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fixed probes to fully characterize the transformation. Here k = 5 for both 4-probe stations
and 6-probe stations. Even though the 6-probe measurements can approximately measure
m6, because of their low azimuthal extent around the storage region, they are sensitive to
other higher-order moments and susceptible to noise. Because m6 doesn’t alias into the lower
order moments anyway, it is omitted from the Jacobian calculation — it is not important to
track over time using the fixed probes.

Tracking m5 at a 4-probe station is tricky because the 4-probe station can’t inherantly
measure m5. Instead, at each 4-probe station, the value of m5 is interpolated from the
neighboring two stations (always 6-probe stations). This approximation requires us to make
the assumption that the differential drift ofm5, the difference in the drift between neighboring
stations, is small, and therefore that the interpolated value is an appropriate substitution.
Systematically, any incorrectness in this assumption gets absorbed into the sync offsets for
the 4-probe stations, which gives us an easy method for tracking the uncertainty caused by
this assumption.

To calculate J, it is easier to calculate J−1 first. This is how the measured Cartesian
moments change as a function of the multipole moments. Because the field is linear in
the moment strength parameter, the derivative with respect to the multipole strength is
simply the measured Cartesian moments given a multipole moment strength of 1. One must
simply calculate the field at each fixed probe location given a pure multipole input field
and calculate the Cartesian moments measured by the fixed probes. In the ideal case of
perfect measurements, the Jacobian matrix would be the identity, with each set of probes
measuring the same quantities. However, there are off-diagonal terms in the Jacobian cause
by asymmetries in the fixed probe positions.

It is important to mention that there are two reasons that the two different bases are
not identical. As mentioned above, the discrete nature of the fixed probes can cause higher
order moments to alias into the lower ones. Perhaps the best example of this is that the
normal sextupole caused a false dipole reading in the fixed probes. Because the fixed probes
have a poor angular distribution around the storage region, they all sit in regions where the
normal sextupole is greater than zero. When the average of all six probes is taken, it will
be non-zero, creating a false dipole reading. The Jacobian treatment corrects for this by
calculating how much the sextupole aliases into the dipole measured by the fixed probes this
way, and then uses the fixed probe station’s own measurement of the m5 moment to make a
correction.

The second reason that the two bases are not identical is that the geometry of the fixed
probes in a given station are not always symmetric. For example, standard 4-probe stations
are not centered around (0, 0) but (1.5 cm, 0). This means, for example, that a straight
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average of the four probes would be an approximation of the field at (1.5 cm, 0), not (0, 0).
A correction would then have to be made that mixes the measured m2 into the m1, using the
horizontal gradient to approximate the field on center. The result of this correction turns
out to be to use the average of only the two centered probes, as preempted in Section 5.1.
However, there are other examples of fixed probe stations with odd geometries that are not
already corrected in the change-of-basis matrix. For example, all the fixed probes in the
inflector vacuum chamber are shifted radially inward by 1 cm, and the four probe stations
by the trolley garage are not symmetric across the x axis. These interesting geometries cause
off-diagonal entries in the Jacobian.

5.2.2 Sample Jacobian Calculation

Multipole (strength 1) Cartesian moment Value
m1 m1 1

m2 0
m3 0
m4 0
m5 0

m2 m1 0
m2 1
m3 0
m4 0
m5 0

m3 m1 0
m2 0
m3 1
m4 0
m5 0

m4 m1 0
m2 0
m3 0
m4 1
m5 0

m5 m1 -2.632
m2 0
m3 0
m4 0
m5 1

Table 5.4: The Cartesian moments measured by a standard 6-probe station, given an input
pure multipole field of multipole strength mi = 1.
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Here is a walk-through of the Jacobian calculation for a standard 6-probe station. Recall
that since we are only interested in the first five moments, we only worry about those
moments. The values of the Cartesian moment given a specific input multipole are shown
in Table 5.4. They lead to

J−1 =


1 0 0 0 −2.632

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

 . (5.16)

Taking the inverse of this matrix yields the Jacobian for a standard 6-probe station.

J =


1.0 0 0 0 2.632

0 1.0 0 0 0

0 0 1.0 0 0

0 0 0 1.0 0

0 0 0 0 1.0

 (5.17)

Note the off-diagonal term that corrects the measured Cartesian m1 with the measured
Cartesian m5. All of the different station geometries and the Jacobians they generate are
shown in Figures 5.11, 5.12, 5.13, and 5.14.

15.4 cm

3 cm 3 cm

x̂

ŷ

J =


1.0 0 0 0 2.632
0 1.0 0 0 0
0 0 1.0 0 0
0 0 0 1.0 0
0 0 0 0 1.0



Figure 5.11: The geometry of a 6-probe station, and the corresponding Jacobian matrix.
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15.4 cm

3 cm 3 cm

1 cm

x̂

ŷ

J =


1.0 0.222 0 0 2.681
0 1.0 0 0 0.444
0 0 1.0 0.444 0
0 0 0 1.0 0
0 0 0 0 1.0



Figure 5.12: The geometry of an offset 6-probe station, and the corresponding Jacobian ma-
trix. The change-of-basis matrix for offset stations are not corrected; instead, the correction
for the offset is done with the Jacobian.

15.4 cm

3 cm

x̂

ŷ

J =


1.0 0 0 0 2.928
0 1.0 0 0 −0.667
0 0 1.0 −0.667 0
0 0 0 1.0 0
0 0 0 0 1.0



Figure 5.13: The geometry of a 4-probe station, and the corresponding Jacobian matrix.
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15.4 cm

3 cm

3 cm

x̂

ŷ

J =


1.0 0 0 0 2.928
0 1.0 0 0 0
0 −0.195 1.0 0 0
0 0 0 1.0 −0.195
0 0 0 0 1.0



Figure 5.14: The geometry of a 4-probe station near the trolley garage, and the corresponding
Jacobian matrix. It is important to note that, because the moments for these different 4-
probe stations are defined by geomtery, and not by probe number, there is not a different
Jacobian for stations 37 and 39 versus station 41, unlike with the change-of-basis matrices.
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CHAPTER VI

Fixed Probe Interpolation

The general strategy for interpolating the magnetic field map from the data is to use
two trolley runs to bracket an interval in time with a well-measured field map in the muon
storage region at the endpoints. Between the trolley runs, the fixed probe measurements are
used to estimate changes of the field, interpolate the tracked moments, and generate what
we call “virtual trolley measurements” (VTMs). The VTMs and the trolley measurements
are synchronized during trolley runs, and changes from the synchronized values are tracked
using Jacobian-weighted fixed probe measurements. If only the lowest-order moments drifted
between trolley runs, this method would always acurately reconstruct the field because the
lowest-order moments are estimated by the fixed probes (see Table 5.3). However, because
higher-order moments do drift, the VTMs do not perfectly track the field, leading to Concept
1.

Concept 1. The fixed probes do not perfectly track the trolley moments predominantly due
to changes in the higher-order magnetic field moments. This is called “higher-order gradient
drift”.

The field measured by probes in an azimuthal slice, whether they are the fixed probes or
the trolley probes, are highly correlated to each other due to the large average (dipole) field.
It is easier to measure the field in a slice by considering sum and difference modes of the
different probes. This leads us to consider moments of the field rather than individual probe
measurements. The historical moments for trolley measurements are the 2D multipoles;
these expansions are covered in depth in Chapter V.. The trolley is specifically designed
to measure the field in the multipole expansion. The fixed probes don’t have the proper
spatial distribution to measure in the 2D multipole basis. The most symmetric moments to
associate with sum and differences modes are approximations of the field gradients in the
Cartesian coordinate system.
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Going forward, we use the notation mtr
i to denote the ith trolley moment, and mfp

j to
denote the jth fixed probe moment (see Table 5.3), both in a particular slice of azimuth.
We will also occasionally use the notation mtr and mfp to denote the vector of all moments
in the slice. Note that these vectors do not correspond to physical field vectors, but are
elements of R17 (trolley), R6 (6-probe stations), or R4 (4-probe stations).

Both mtr and mfp are functions of the field and are therefore related to each other. The
trolley is our standard for the field measurements, so we use the fixed probes to approximate
the trolley measurements, writing the linear term of the Taylor expansion of the trolley
moments as a function of the fixed probe moments. Higher order terms are related to the
unmeasurable higher-order moments and are accounted for in the systematic error analysis.

mtr
(
mfp(t)

)
≈ mtr

(
mfp(0)

)
+
∂mtr

∂mfp
·
(
mfp(t)−mfp(0)

)
mtr(t) ≈ mtr

0 + J ·
(
mfp(t)−mfp

0

)
(6.1)

Four quantities are required in order to calculate a virtual trolley measurement from a
single fixed probe station: mtr

0 , mfp
0 , mfp(t), and the Jacobian matrix J = ∂mtr

∂mfp . The first
two are measured simultaneously during a trolley run while the trolley is near each fixed
probe station, which sets the synchronization time tst = 0 for each station indexed by st

(the baseline time is different for each station due to the finite time it takes for the trolley to
travel through a given region of azimuth), and resynchronizes the two sets of probes at that
time. mfp(t) is monitored continuously during the experiment by the fixed probes stations.
That last required quantity, the Jacobian matrix, is determined analytically. Simulation or
dedicated studies in the ring using applied magnetic field moments from the surface coils can
also be used to determine the Jacobian. Combining these as shown in Equation 6.1 produces
a linear approximation for the moments the trolley would have measured at that time. This
is a virtual trolley measurement.

The best information about the field the muons average during storage comes from trolley
runs. During these runs, we get information that is “dense in space but sparse in time.” NMR
data from these times “pin” the field, so we have a good idea of the nature of the field at
particular times. In the following analysis, the baseline measurements mtr

st(0) and mfp
st(0)

from each fixed probe station represent these pinned field numbers.
The fixed probe runs are the compliment to the trolley runs because they are “sparse in

space but dense in time.” “Sparse in space” here means three things. First, the fixed probes
make only 72 azimuthal measurements (as opposed to the thousands of azimuthal positions
from a trolley run). Second, there is a maximum of six fixed probes per station, which limits
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the number field moments we can measure to, at most, six per station. Third, the fixed probes
live outside the muon storage region. Despite these three limitations, the fixed probes provide
value by measuring approximately every 1.5 seconds including during muon injections. They
provide extra points for interpolating the field between trolley measurements.

The Jacobian that relates the fixed probe measurements to the trolley measurements
encodes most of the geometry of the experiment. (Some geometry is represented by choice
of moments, discussed in Section 5.1, but those choices were made to simplify the Jacobian.)
It can be calculated in several ways. The current best calculation comes from simulation and
will be discussed in Section 6.4, but efforts are also underway to extract it from a special
surface coil study, and to calculate it analytically.

Matrix Method Algorithm

The steps comprising the matrix method algorithm are explained in detail in the rest of
this chapter. They are listed here to provide an overview of the full process.

1. Read the trolley run and fixed probe run data from the tier 1 ROOT files. Apply the
plunging probe calibrations to each trolley probe’s raw frequencies. (The current data
comes from the v09_20_00 production data.)

2. Interpolate all NMR probe frequencies and trolley positions onto a common time grid.

3. Convert all NMR measurements to moment measurements.

4. During trolley runs, while the trolley is near fixed probe station i, determine the average
of the trolley and fixed probe station moments (mtr

st(0) and mfp
st(0), respectively).

5. Synchronize the trolley and fixed probe moment measurements during the trolley runs.
Use the fixed probe runs to interpolate the fixed probe measurements between the
trolley runs, interpolating both forward and backward. This interpolation produces
virtual trolley measurements.

6. At this point, we have the full field map that will be weighted by the muon distribution
and integrated as discussed in Chapter VII. However, it is also to determine unweighted
field maps for discussions of the field independent of the muon weighting, so it can be
useful to perform two more steps.

7. Bin the events into a longer time grid. The specific grid depends on the ωa subrun
times. (In this chapter, no additional time averaging is shown.)

72



8. Perform an average of the 72 fixed probe stations for each moment for each time bin.
The average is weighted by the azimuthal extent of each station.

The outputs of this algorithm are azimuthally averaged moments, averaged over the
specified time bins. In this chapter, I present an example of the matrix method algorithm by
applying it to the “60 hour” data set. This data set consists of two trolley runs bracketing
approximately 60 hours of production muon data. For this example, the average field (dipole
field, m1) is blinded by a small offset, because the absolute calibration is still blinded. The
higher-order moments, however, are not blinded.

6.1 Time-Grid Interpolation

The input data to this analysis are measurements from the fixed probe runs and trolley
runs. Notably, from the trolley, they contain the time, trolley position, and extracted FID
frequency for each event. The trolley records all 17 probes consecutively approximately every
half-second. The fixed probe data contain the time, FID frequency, and a data quality tag
for each event. The fixed probe system records data from all 378 fixed probe approximately
every 1.5 seconds (1.1 seconds in Run 2).

The measurements from the trolley and fixed NMR probes happen asynchronously. The
trolley moves between each measurement within a single event, and each of the 17 probes
records its frequency at a slightly different azimuthal position. The fixed probes face a
similar issue where each of the probes connected to a single multiplexer records at a slightly
different time, meaning that each measurement from an azimuthal station is at a different
time. Additionally, the trolley and the fixed probe measurements are not synchronized, so
a full event from the trolley is not guaranteed to have an associated event from the fixed
probes.

The fixed probe measurement have associated data quality tags. The FIDs for the event
are compared against templates generated for each individual probe. If the FID under
scrutiny does not have a similar amplitude, length, or power, it is flagged. A common cause
for these flags in Run 1 is electrical interference from other system causing false triggers in
the NMR system. The cause of the interference was identified and shielded during Run 1,
but many data runs still have the interference affecting the FIDs. Even in cases of extreme
interference, fewer than 1% of FIDs are flagged for data quality problems.

To simplify the analysis and its interpretation, all the NMR data is synchronized by
interpolating the individual fixed probe frequency onto a common time grid, used for both
the trolley and fixed probe. The grid is centered every second on POSIX time (seconds
since 00:00:00 UTC on 1 January 1970). The raw time and frequency data pairs for each
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NMR probe define an interpolating function using a simple linear spline. This interpolating
function is integrated in one second bins, centered on the time grid, to find the average field
in that bin. This interpolation method has the benefit of making future time averaging steps
easier. Summing consecutive interpolation points is equivalent to integrating the raw data
over the same amount of time, which preserves the definition of time-averaged fields in a
convenient way. This method also allows for fixed probe events flagged for a data quality cut
to be dropped first without requiring a redefinition of the interpolation points. Note that
this interpolation procedure is also applied to all the trolley position measurements, not just
the NMR probe frequencies.

Before interpolation, each trolley event contains 17 × 3 numbers (the time, position,
and frequency for each probe in the event) and each fixed probe event contains 378 × 3

numbers (the time, frequency, and data quality tag for each probe). After interpolation,
each combined event contains 1 + 1 + 17 + 378 quantities: the interpolation time from the
grid, the interpolated trolley position at that time, and the interpolated NMR frequency
from each of the trolley and fixed probes at the interpolation time. See Figure 6.1 for a
sample output from frequency measurements from fixed probe 200.

Figure 6.1: A sample of measurements from fixed probe 200 during the 60 hour data set
before and after it is interpolated onto the new time grid. The dashed lines show the
integration boundaries for each orange interpolated frequency.

This interpolation scheme comes with two related caveats due to over- and under-
sampling. The time grid under-samples the trolley NMR data, which is taken at approx-
imately 0.5 second intervals. The time grid acts as a low pass filter in this case; each
interpolation point is a combination of several raw data points. This smooths the data, and
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is especially useful in reducing the effect of spikes in FIDs caused by trolley motional effects.
The one second time grid over-samples the fixed probe data, where there are sometimes two
interpolated points between neighboring raw data points. This is not a problem, though,
because further time averaging occurs at later stages in the analysis. This is where the
mean-preserving definition of the interpolated points shines, allowing time bins to be chosen
at later times in the analysis, without having to redefine the initial time grid.

As noted, the data consists of measurements from 378 fixed probes (plus 17 trolley probes
and the trolley position if the run being considered is a trolley run), all interpolated onto a
one-second time grid. At this point the change-of-basis matrices discussed in Chapter V are
applied to the probes from each station to form 378 (+ 17) field moments. A further step is
taken at this point: even though the 4-probe stations only measure the first four moments
of the field, for reasons that are discussed in Section 5.2, it is useful to track an estimate of
the fifth moment at the 4-probe stations. The estimate used at each 4-probe station is the
average of the m5 value from the adjacent 6-probe stations, weighted by their proximity to
the 4-probe station. The nearest stations to any 4-probe station are always 6-probe stations;
there are no instances of two 4-probe stations in a row.

6.2 Trolley Footprint Veto

As the trolley drives past a fixed probe station i, the trolley’s magnetic image perturbs
the fixed probes (Figure 6.2a). This perturbation needs to be removed from the fixed probe
data before time averaging to calculate mfp

i (0). To remove the trolley image from a given
fixed probe station, we veto all events from the fixed probe measurements during the time
the trolley was close enough to influence them measurably (25 degrees of azimuth about the
fixed probe location). The local drift in time is calculated by fitting a 5th-degree polynomial
to the remaining non-vetoed data (Figure 6.2b). Meanwhile, data from the stations not
being perturbed by the trolley (defined as all stations in the ring more than 3 stations away
from the station in question and excluding the particularly noisy stations 0-5) is averaged to
estimate the ring-wide transients and used as a replacement for the vetoed region. The global
drift is calculated by fitting a 1st-degree polynomial to the replacement data (Figure 6.2c).
The global drift is subtracted from the replacement data to estimate the short-term transient
behavior, and then the local drift is added. Finally, the replacement data is inserted into
the vetoed region (Figure 6.2d). The overall effect of this replacement method is that the
average moment measured by the fixed probe station is dominated by the “local drift,” the
portions of the data measured when the trolley is not perturbing the station. However, it
also allows for corrections from short-scale transients that are experienced around the ring,
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which would otherwise be masked by the veto over the station.

6.3 Trolley-Fixed Probe Synchronization

Averaging occurs for each station while the trolley is “under” that station. Because the
final goal of this analysis is an azimuthal average, we want to include all of the trolley
measurements in the analysis. Therefore, the trolley is always “under” a station, which
is defined to be the closest station. The fixed probe station moments are averaged over
time while the trolley is under that station. Note that this means the average is over the
replacement values from the trolley image removal.

The trolley moments are averaged over azimuth while the trolley is under that station.
Recall that the trolley position is also interpolated onto the same time grid as the field
measurements, so there is a definite time and position for each event. We weight the average
by the azimuthal extent of that particular measurement (the distance between its nearest
neighboring measurement in azimuth, divided by two) to account for the trolley’s varying
speed moving around the ring, approximating

〈
mtr

st

〉∣∣φ2

φ1
=

∫ φ2

φ1
dφmtr(φ)∫ φ2

φ1
dφ

≈
∑

φ1≤φi<φ2
mtr

i ∆φi∑
φ1≤φi<φ2

∆φi

, (6.2)

where i indexes the measurements, ∆φi is the azimuthal extent of the ith measurement, and
mtr

i is the moment vector of the ith measurement.
For each moment mtr

i of each station, the analysis yields three numbers: the central time
of the averaging window (different for each station), the average values the fixed probes
measured for the moments while the trolley was present, and the average value the trolley
measured averaged over the same time (see Figure 6.3). These effectively set time zero for
interpolation in that station, and the measurements of mtr(0) and mfp(0) in Equation 6.1.

6.4 Virtual Trolley Measurements and the Jacobian Matrix

We calculate virtual trolley measurements (VTMs) from each fixed probe station in each
event, during both trolley runs and fixed probe runs. The form of equation 6.1 guarantees
that the VTM is equal to the actual (average) trolley measurement at times when the trolley
is near the fixed probe station, which is why we call this process “synchronization.” The
calculation of the virtual trolley measurement requires the synchronization baselines mtr()

and mfp(0), the Jacobian for that station’s geometry J, and the station moments from that
event mfp(t). In terms of these quantities, we can rearrange equation 6.1 into the form
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(a) The trolley footprint seen by station 10 as the trolley goes by.

(b) The same measurements from station 10 with the trolley footprint vetoed. The local drift is fit
by a fifth-order polynomial.
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(c) The global field measurement during station 10’s vetoed time, calculated from the rest of the
ring, and the global drift in the same time.

(d) The replacement data inserted into the station 10’s vetoed time.

Figure 6.2: The step by step procedure for replacing vetoed fixed probe data by ring-average
data, corrected for both local and global drifts.
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Figure 6.3: Top to bottom: The averaging time, trolley baseline moments mtr
st(0), and fixed

probe baseline moments mfp
st(0) for each station in Run 3956.
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mvtr(t) = mtr(0) + J×
(
mfp(t)−mfp(0)

)
. (6.3)

See Figure 6.4 for an example for fixed probe station 30, m1.

Figure 6.4: Top: The station 20 m1 measurement from the 60hr data set, showing the
baseline fixed probe measurement from the trolley run. Bottom: The station 20 m1 VTMs,
showing the baseline trolley measurement from the trolly run.

As mentioned before, it is useful to track an estimate of the the fifth moment even at
4-probe stations. This is because m5 aliases into m1, the average field and most important
moment of the field for the analysis, in the fixed probe geometry (see Table 5.3 for moments
definitions). This means that, if uncorrected, drift in m5 will be incorrectly measured as drift
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in m1 in the 4-probe stations. By using the nearest 6-probe stations to estimate the drift, we
can correct the measured m1 from the 4-probe stations. This does introduce differential drift
(difference in moment drift at different stations) as a systematic uncertainty to the 4-probe
stations. However, this uncertainty is absorbed into the sync offset systematic uncertainty
because the trolley can pin the m5 value, even for the 4-probe stations. The approximated
drift from the nearest neighbors just acts as a correction on the drift from the synchronized
values from the trolley runs..

6.5 Synchronization Interpolation

Production runs include multiple trolley measurements at the beginning and end of the
fixed probe runs that monitor the field during muon-data intervals. Having multiple trolley
runs means that there are multiple opportunities to sync the virtual trolley measurements
to the actual trolley measurements. We define the sync constant c from a single trolley run
by rearranging equation 6.3 (recall that t = 0 is different for each station),

c = mtr(0)− J×mfp(0), (6.4)

so that

mvtr(t) = J×mfp(t) + c. (6.5)

Note that the sync constant is effectively a calibration constant. The trolley calibrates the
fixed probe stations as it passes by each station during a trolley run. This is the last step of
the calibration chain covered in Chapter IV.

Ideally, two trolley runs would have the same sync constant, which would imply that
there would be no difference in the VTMs if we used the initial sync and propagated it
forward in time, or if we used the next sync and propagated it backward in time. However,
in practice the sync offset does change, as shown by Figure 6.5. The leading order cause
of the differences is drifting higher-order moments that are untrackable by the fixed probe
stations. Recall that the higher-order moments can be viewed as higher-order gradients of
the field. These higher-order moments alias into the measured moments, so any drift in them
leads to an error in the fixed probe’s measurements. However, these higher-order moment
drifts are small and slow compared to the drift of the lower-order moments, which allows us
to correct them.

The difference between the sync constants of two trolley runs is essentially a measurement
of the drift of these higher-order moments called the sync offset. Figure 6.7 shows the
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Figure 6.5: The VTM prediction from the fixed probes synced with the first trolley baseline
does not match the second trolley baseline. The downward spike at about 2018-04-22 7:00:00
CDT is from a PSFB cycle.
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distribution of sync offsets for all 72 stations. We can perform a correction by interpolating
the sync constant for each event between the two nearest neighboring trolley runs. Each
VTM event has a unique sync offset that is an average of the nearest sync offsets from
trolley run, weighted by the proximity of each trolley run. We can define the interpolated
sync offset

s(t) =
c2 − c1
t2 − t1

(t− t1) + c1, (6.6)

where ci and ti are respectively the sync constant and sync time measured for the given
station by trolley run i (the closest two trolley runs). A final form for each virtual trolley
measurement in a given fixed probe station is

mvtr(t) = J×mfp(t) + s(t). (6.7)

Figure 6.6 shows the result of applying this “backwards correction” to the same station 2 m1

shown in Figure 6.5. Between the two plots, the positions of the yellow ‘X’s do not change.
The backwards correction applies a linear correction to the time dependence of the higher-

order moment drift of Concept 1. Any higher-order time dependence in these gradients still
cause uncertainty in the fixed probe measurements. There are times when the sync constant
can not be interpolated over the fixed probe data. These include times when the fixed probe
runs are not bookended by trolley runs, and times when a significant change in the ring
casts doubt about the synchronization, such as a major change to the SCC configuration
that happens during a fixed probe run. In these cases, only one-way synchronization, forward
or backward, can be used. The systematic uncertainties caused by both the two-way and
one-way scenarios are discussed further in Chapter VIII.
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Figure 6.6: Sample virtual trolley measurements with the interpolated sync offset, along
with sync values from both trolley runs.
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Figure 6.7: Histograms of the sync offset differences between the two trolley runs of the 60
hour data set.
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CHAPTER VII

Muon-Weighted Averaging

An important question to ask before moving on with averaging the magnetic field is “How
do the muons average the field?” To answer that, we begin with Equation 2.7 assuming that
the term proportional to the electric field is zero (and assuming the field is entirely in the
y-direction), so that

ωa = aµ
e

m
B. (7.1)

A single muon will accumulate a phase as it travels around the ring until it decays at time
T . The phase it has accumulated at this time is the integral of ωa. Assuming that the field
does not drift over the time T (a very good assumption with muon’s mean lifetime of 64 us
in the lab frame), the average frequency over its lifetime is

〈ωa〉k = aµ
e

m

1

T

T∫
0

dt B(rµ(t)), (7.2)

where rµ(t) is the muon’s path as a function of time. The subscript k here indicates that
this is a time average for the kth muon.

We want to convert this integral to being over azimuth instead of time, so we make a few
substitutions, such that

dt =
dl

c
=
rµ(φ)dφ

c
=⇒ T =

R

c
Φ. (7.3)

It is important to note that φ here is not bounded to [0, 2π), and on average Φ will approach
values of thousands of radians. We have introduced rµ(φ) as the radius of muon’s path at
a given azimuth, and then defined R = 〈rµ〉 as the radius averaged over φ. Making these
substitutions, we can see

86



〈ωa〉1 = aµ
e

m

1

RΦ

Φ∫
0

dφ B(rµ(φ))rµ(φ). (7.4)

We can extend this integral to three dimensions by incorporating the muon path (in
both the r and y axes) as delta functions, and integrating over r and yover the muon storage
region. The exact limits of integration don’t matter as long as they include the full path, so
call the limits y ∈ [−y0, y0] and r ∈ [r1, r2].

rµ(φ) =

r2∫
r1

dr

y0∫
−y0

dyδ(r − rµ(φ))δ(y − yµ(φ)). (7.5)

These definitions allow us to rewrite the integral as

〈ωa〉k = aµ
e

m

1

RΦ

Φ∫
0

dφ

r2∫
r1

dr

y0∫
−y0

dy rB(r, y, φ)δ(r − rµ(φ))δ(y − yµ(φ)). (7.6)

Here all the information about the muon’s path is encoded in the delta functions so the field
map and volume element r can be integrated over 3D space. At this point, it becomes useful
to split the integral over φ into a sum of integrals over single turns. These integrals are over
φ ∈ [0, 2π) and are parametrized by n, the number of cycles the muon makes. The muon
makes N total cycles, so we sum from n = 0 to N − 1.

〈ωa〉k = aµ
e

m

N−1∑
n=0

2π∫
0

dφ

r2∫
r1

dr

y0∫
−y0

dy rB(r, y, φ)
1

2πNR
δ(r− rµ(2πn+ φ))δ(y− yµ(2πn+ φ)). (7.7)

The only terms in the integral that depend on the parameter n are the delta functions, so
we can pull the sum into the integral. This gives us

〈ωa〉k = aµ
e

m

2π∫
0

dφ

r2∫
r1

dr

y0∫
−y0

dy rB(r, y, φ)
1

2πNR

(
N−1∑
n=0

δ(r − rµ(2πn+ φ))δ(y − yµ(2πn+ φ))

)
.

(7.8)
This sum over delta functions is a distribution of the muon’s position in the ring, so we

write

ρk(r, y, φ) =
1

2πNR

(
N−1∑
n=0

δ(r − rµ(2πn+ φ))δ(y − yµ(2πn+ φ))

)
. (7.9)
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Note that this distribution is already normalized. It is a number density with units of
inverse volume. Again, the subscript k indicates that this is the average distribution for the
kth muon. However, it is easy to see how this generalizes to the case of an average over
many muons. The field map is constant for all muons in a fill, so the only averaging in
〈ωa〉1 → 〈ωa〉 will be averaging the distributions ρk for each muon in the fill. It is useful
here to only consider muons that will be included by the calorimeters (i.e., corrected for
acceptance, cuts, etc.). Then, for a single fill, we have ρk → ρµ and as the total number of
muon-turns becomes very large, the distribution becomes continuous as the muons explore
the storage region. The final result is an average over all of the muons in a fill, 〈ωa〉, where

〈ωa〉 = aµ
e

m

2π∫
0

dφ

r2∫
r1

dr

y0∫
−y0

dy rρµ(r, y, φ)B(r, y, φ). (7.10)

Referencing Equation 7.10 as ω̃′
p, we can express the muon-weighed field average for a

single fill at time t as

B̃(t) =

2π∫
0

dφ

r2∫
r1

dr

y0∫
−y0

dy rρµ(r, y, φ, t)B(r, y, φ, t). (7.11)

Note that ρµ(r, y, φ, t) now has time dependence, and accordingly has units of inverse volume-
time. We can then average over time for a full muon data set. Using the notation from
Equation 3.5, we can rewrite B in terms of ω̃p

ω̃′
p =

∫
dr dt ω′

p(r, t)ρµ(r, t)∫
dr dt ρµ(r, t)

(7.12)

where the integral is performed over the full storage volume and the time of a data set. This
chapter lays out a framework for evaluating this integral. However, at the time of writing,
the required inputs from the tracker calculations and from beam dynamics still works-in-
progress by two other, separate teams within the collaboration, so only toy models have
been used in the calculations so far.

Although it would be ideal to know ρµ(r, t) exactly for all positions and times, the
experiment is limited in how well it can measure the time and spatial evolution of the muon
distribution. Because there are only two straw tracker stations installed in the ring, the
azimuthal variation of the beam profile is difficult to study. Beam profiles from the straw
tracker can be corroborated by simulations and beam dynamics calculations, which can
provide a model for the azimuthal dependence of the muon beam. The time dependence of
the muon distribution is drawn from the positrons counted by the calorimeters (CTAGs).
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Periods that have high positron counts (and therefore higher statistical significance in the
determination of ωa) are weighted higher in the field average. The weights can also be set
to zero for time periods that are cut from the data used in the ωa analysis due to poor data
quality, so ω̃p is only averaged over the same times that ωa is averaged.

The muon distribution distribution time and spatial dependence can be factored and
written as

ρµ(r, t) = T (t)σ(θ, x, y), (7.13)

factoring out the time dependence. Factored like this, σ is still a number density, while T
is a prefactor normalizing σ to the number of detected decay positrons in a unit time with
dimensions of inverse time. This form makes the assumption that the beam distribution is
constant in time. This is a justified assumption to make because the time variation of the
parameters of the beam vary slowly. Though not necessary, a generalization to the time-
dependent case is discussed in Section 7.5. Splitting the muon distribution like this allows
the time-dependent part of Equation 7.12 to be integrated first, then the spatial-dependence
can be integrated.

7.1 Time Averaging

By assuming that the muon distribution can be factored as it is in Equation 7.13, the
time integral in Equation 7.10 is relatively simple. Using the definition for ρµ in Equation 7.9

ω̃′
p =

∫
dr

∫
dt ω′

p(r, t)T (t)∫
dt T (t)

σ(θ, x, y)∫
dr σ(θ, x, y)

. (7.14)

The first fraction in the above equation is the time-averaged field map weighted by the
decay positron counts, which are binned by ωa subruns generally about 10 seconds long.

ω′T
p (r) =

∫
dt ω′

p(r, t)T (t)∫
dt T (t)

. (7.15)

Each station-wise field moment is binned into the same subrun time bins and then averaged.
The subrun-average moments are weighted by the number of decay positron counts from the
subrun, and averaged over the full data set (many subruns). The number of Counted TAGs
(CTAGs) in a unit time dN

dt
is proportional to the number of muons present in the ring at

that time. This method makes data quality cuts easy, as any subruns that are rejected from
the ωa analysis, including rejections due to field events, can be omitted from the field average
by just not including those times in the binned moments. This is equivalent to setting the
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weight T (t) for those times to zero.
Using this definition of the time-averaged field map, Equation 7.10 is reduced to the

purely-spatial integral

ω̃′
p =

∫
dr ω′T

p (r)× σ(r)∫
dr σ(r)

. (7.16)

7.2 Beam Profile Model

Much like the field moments, the beam profile can be considered 2D slices in azimuth.
The 2D muon distributions can be simulated, analytically calculated, or measured by the
straw trackers. Taking a cue from the field map, it is convenient to consider the muon
distribution in terms of its moments. The first four moments are the x and y centroids, and
the x and y widths. Higher order moments, such as the skew, kurtosis, andx − y covariant
parameters can also be considered, but in general are harder to calculate. Instead, we can use
the first four moments in a fit to the distribution. Figure 7.1 shows the 2D profile measured
by tracker station 12, the parametrized fit, and the residuals.

In Figure 7.1, the function used to fit the beam profile is

σ(x, y) = A exp

(
−(y − y0)

2

2s2y

)
×[

A1 exp

(
−(x− x1)

2

2s2x1

)
+ A2 exp

(
−(x− x2)

2

2s2x2

)
+ A3 exp

(
−(x− x3)

2

2s2x3

)]
. (7.17)

The relationship between many of the coefficients, such as the ratio x3−x2

x2−x1
(assuming x3 >

x2 > x1), are fixed by fitting the function to the measured beam profile. Only scale factors
that control the overall x and positions, x and y widths, and total amplitude, while preserving
the shape, are left as free parameters. These five free parameters roughly correspond to the
moments of the beam mentioned above. The specific form of Equation 7.17 is not important.
Further studies are required to determine the effect of any chosen parameterization on the
averaging scheme. In general, the only important part is to define the function in such a
way that the azimuthal dependence of the beam moment parameters can be estimated by
beam dynamics studies and simulations. Then a generic parameterization could be written

σ(φ, x, y) = σ(x, y, C1(φ), C2(φ), ...) (7.18)

where the Cn are the beam moment parameters.
An important future step in the tracker analysis is to correct for the acceptance of the
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(a) Left: The beam profile from the trackers. Right: A four parameter fit to the profile. The
underlying function is a gaussian in the y direction times a sum of three gaussians in the x direction.
Many of the arguments to the x gaussian are constrained by training the fit parameters on the real
distribution. This fitting function is only a sample, and subject to future change. The color scale
shows detected decay positron counts.

(b) The residuals of the four parameter fit.

Figure 7.1: The measured and fit beam profile. The fit takes four parameters, the x and y
centroids, and the x and y widths. Note that the residual is less than 5% of the maximum.
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calorimeters. Only decay positrons that both hit a calorimeter and meet the energy threshold
are used in the ωa analysis. Therefore, we only want to know about the distribution of the
muons that produced those positrons. The acceptance correction for the tracker analysis is
underway at the time of writing.

7.3 Azimuthal Dependence of the Muon Distribution

We can extend the 2D distribution into a 3D distribution by writing the beam moments as
functions of azimuth, similar to the treatment of the magnetic field moments. The azimuthal
dependence of the centroid and widths are both known beam dynamics phenomena called
the closed orbit distortion and beta functions, respectively.

Closed Orbit Distortion

The ideal muon orbit is a 7.112 m circle centered at the center of the storage ring, so that
the muon is always at the same radial position. Variations in the injected muon momentum
and the various focusing fields cause the muons to “swim” around the central orbit, but
most of these excursions are not in phase with the full path around the ring and average
out over all the muons and all the revolutions. Excursions that do not average out over the
muon distribution and lifetime create closed orbit distortions. These can be thought of as
azimuthally-dependent variations in the centroid of the muon 2D profile. Because they are
periodic, it is convenient to consider them as a Fourier series. Then, the N = 0 term is the
mean radius of the orbits. The N = 1 term is the lowest-order distortion from the ideal
orbit. It corresponds to a shift in the center of the circular orbit from the center of the ring
while the radius (from the new center) remains constant in azimuth. Higher order terms in
the Fourier expansion correspond to perturbations from the circular orbit (see Figure 7.2 for
example closed orbits).

Beta Function Breathing

The beta functions encode information about the width of the beam as it travels around
the ring, undergoing focusing by the magnetic and electric fields. The electrostatic quadrupoles
focus the beam vertically and defocus it horizontally. The vertical distribution is narrow-
est between the quadrupoles and widest in their center. Conversely, the horizontal width
is widest between the quads and narrowest in their center. There are four quad stations
distributed evenly around the ring, which causes the widths to vary around the ring with
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N = 0
N = 1
N = 2

Figure 7.2: Example closed orbits, labeled by N , the highest-order non-zero Fourier term.
Note that the N = 1 term is just a displacement of the circular orbit.

harmonics of the N = 4 period. Sample beta functions (which are proportional to the square
of the width) are shown in Figure 7.3.

7.4 3D Integration

With analytical expression for both the 3D muon distribution and magnetic field map,
we can solve the spatial integral of Equation 7.16. By defining analytic functions for the
field and distribution over x, y, θ, standard N-dimensional quadrature techniques can be
used. The definition of the field map uses the definition of the multipoles (see Section 5.1),

By = A0 +
∑
n=1

An

(
r

r0

)n

cos(nθ) +Bn

(
r

r0

)n

sin(nθ). (7.19)

Making assumption that the higher order multipoles integrate to small values when weighted
by the highly-symmetric 2D beam profile, the analytic equation for the field map is

ω′T
p (φ, r, θ) = m1(φ) +

( r

4.5 cm

)
[m2(φ) cos(θ) +m3(φ) sin(θ)]+( r

4.5 cm

)2
[m4(φ) sin(2θ) +m5(φ) cos(2θ)] . (7.20)

Here, we have considered the moments m1(φ) through m5(φ) to encode all the azimuthal
dependence of the field, and the azimuthal dependence is evaluated from the 72 fixed probe
stations distributed around the ring. The moments in this case are also given in units of Hz,
corresponding to the calibrated frequencies of the NMR probes. Note that r and θ are the
polar coordinates corresponding to x and y in a 2D slice.
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Figure 7.3: The beta functions from E821, reproduced from [40]. The beta functions show
how the width of the beam profile varies around the ring.

The analytic function for the muon distribution is constructed by providing azimuthally
dependent arguments to the fit shown in Figure 7.1. The arguments will be provided by
beam dynamics and simulations. With both analytic functions defined, the integrals in
Equation 7.16 are evaluated numerically, and is

ω̃′
p =

∫ 2π

0
dφ
∫ r2
r1

dr
∫ y0
−y0

dy rω′T
p (φ, r, y)σ(φ, r, y)∫ 2π

0
dφ
∫ r2
r1

dr
∫ y0
−y0

dy rσ(φ, r, y)
, (7.21)

where ω′T
p is defined in terms of the magnetic field moments in Equation 7.20 and σ is defined

in terms of beam shape parameters, such as in Equation 7.18.

7.5 Generalization to the Time-Dependent Beam Profile

The generalization to the case of significant know time dependence of the muon distribu-
tion could be performed similarly, beginning from Equation 7.10. Instead of the integration
over time being done over the full data set, however, it would be done over time bins corre-
sponding to known closed-orbit averages, or times over which the closed orbit does not drift
considerably. This would modify Equation 7.14 into

ω̃′
p =

Tmax∑
n=0

∫
dr

∫ Tn+1

Tn
dt ω′

p(r, t)Tn(t)∫ Tn+1

Tn
dt Tn(t)

σn(θ, x, y)∫
dr σn(θ, x, y)

. (7.22)
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In each of these time bins, indexed by n, the beam profile σn would be different, but the
method to calculate the integrals would be the same. We would calculate an ω̃p for each bin,
which we would then average over time to calculate the value for the full data set.

Alternatively, the time dependence could be added to the analytic functions described
in Section 7.4 and then the average could be calculated by 4-dimensional quadrature. This
method would drastically increase the time required for computation, and require careful
consideration to fold in the number of muons in the beam at any given time, determined by
the CTAGs, but nevertheless provides a strong candidate for a high-precision calculation in
the future.
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CHAPTER VIII

Systematic Corrections and Uncertainties

The analysis approach presented in the dissertation can effectively estimate the first five
moments of the field as a function of time, with an eye towards time averaging over full data
sets in the future. This chapter covers the statistical and systematic uncertainties involved
in these estimates. Unless otherwise noted, the uncertainties quoted are averaged over time
for the full named data set.

It is useful to break the uncertainties into three types: Type A, Type B, and “Type
A/B.” Types A and B are commonly used terms, and roughly correspond to statistical and
systematic uncertainties, respectively [46]. A better way to think of them is as uncertainties
that improve with more measurements and those that don’t. These definitions lead to our
definition of “Type A/B,” which are uncertainties that would improve with more trolley
runs, but are limited by the rate trolley runs can be performed.

Type A uncertainties for the field analysis consist mainly of the single measurement
uncertainties of the NMR probes. Even the noisiest probes (the ones in stations 1, 3, and 5)
can produce useful data if they are averaged for long enough periods of time. The Type A/B
uncertainties are mainly encoded in the measurement of the sync offset. This term includes
uncertainties caused by higher-order gradient drift, probe position errors, and other time
dependent drifts. Type B uncertainties consist of uncertainties in the trolley measurements,
and measurements further up the calibration chain (in the plunging and absolute probes).
They also include some analytic choices in the interpolation analysis like the trolley footprint
removal.

8.1 Trolley Systematics

The trolley systematics fall into either Type B or Type A/B uncertainties because they
are mostly caused by uncertainty in the trolley’s position and the trolley’s physical motion
during data taking. All the uncertainties here are classified by their effect on the naive
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Source Uncertainty (Hz) Uncertainty (ppb)
Frequency extraction 0.3 5
Trolley probe offset 0.74 12
Azimuthal position 0.3 5
xy position (m1) 0.6 10

xy position (m2, m5) 1.5 26
xy position (m3, m4) 0.2 2

Trolley spikes 0.3 5
Other motional effects <1.2 <20

Total (m1) 1.6 26
Total (m2, m5) 2.9 47
Total (m3, m4) 1.5 25

Table 8.1: The trolley systematic uncertainties by source for Run 1.

azimuthal average of the field map. Table 8.1 summarizes the sources and their respective
uncertainties. The entries are discussed in the following sections. Note that several sources
of uncertainty are estimated based on a collaborator’s work and are describe in internal
documents as referenced.

8.1.1 Trolley Probe Offsets

Uncertainties in the plunging probe calibrations and trolley probe offsets are estimated
to be about σωtr = 2.5 Hz (40 ppb) in each offset [47]. The uncertainties are averaged into
the first three moments by the number of trolley probes used in each moment calculation,
given by

σmtr
1
=

1√
13
σωtr = 0.69 Hz = 11.1 ppb, (8.1)

σmtr
2
=

1√
12
σωtr = 0.71 Hz = 11.5 ppb, (8.2)

σmtr
3
=

1√
12
σωtr = 0.71 Hz = 11.5 ppb. (8.3)

We therefore assign a conservative estimate of 0.74 Hz (12 ppb) to uncertainty from the
plunging probe calibrations for m1, m2, and m3. The goal for the plunging probe analysis
is the achieve better than 30 ppb uncertainty per trolley probe [48], which would reduce the
estimate of the uncertainty of the moments to under 10 ppb. It should be noted that there
is an absolute offset blind, common to all the probes. This means that m1 is blinded, but
not the higher order moments. The scale of the blind is currently 100 ppb.
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8.1.2 Trolley Azimuthal Position

There is an uncertainty in the position of the trolley recorded during each trolley NMR
measurement. This causes an uncertainty in the azimuthal average of the field. The az-
imuthal average for non-uniform sampling is∑

ωi∆φi∑
∆φi

=

∑
ωi∆zi∑
∆zi

. (8.4)

The systematic uncertainty arises because of the position uncertainty combined with the
azimuthal gradient. Assuming an azimuthal gradient dBy

dz
≤ 0.5 ppm/mm, chosen from

the RMS gradient calculated during a typical trolley run and the RMS azimuthal position
uncertainty δrms∆z ≈ 0.1 mm, the azimuthal average uncertainty is 50 ppb (3 Hz).

A more detailed estimate based on Monte Carlo studies [44] has been built on this
estimation technique. The estimate for the uncertainty in the azimuthal average caused by
uncertainty in the trolley position is 0.3 Hz, or 5 ppb.

8.1.3 Trolley Spikes

Trolley spikes are rapid changes of the frequency related to trolley motion measured by
trolley probes that are not due to azimuthal field variations. The current hypothesis is that
they are due to eddy currents induced by changes in the trolley orientation and motion in the
azimuthal gradient. This systematic is under continued study. A study that compare moving
trolley runs to “start-stop” trolley runs is planned. Analysis of such a study is ongoing for
motion over a quarter of the ring from the trolley garage to the trolley drive.

For current purposes, we estimate the error based on a study [49] that analyzes outlier
frequencies defined by a variable threshold and compares clockwise (CW) and counterclock-
wise (CCW) trolley runs to separate spikes from azimuthal variations of the field. Figure 8.1
shows a sample of the appearance of the spikes as a function of azimuth, and figure 8.2 shows
the effect on the azimuthal average of each trolley probe. Further Monte Carlo simulations
based on analysis suggest a realistic estimate of the systematic uncertainty from the trolley
spikes is 0.3 Hz (5 ppb) [44].

8.1.4 Frequency Extraction

The trolley frequency extraction is more precise than the fixed probes because the gra-
dients in the center of the vacuum chamber are lower, resulting in longer T ∗

2 ; however, the
trolley spikes lead to larger gradients and shorter T ∗

2 . The statistical uncertainty per shot is
less than 1 Hz, but estimates from initial simulations suggest that a ceiling on RMS varia-

98



Figure 8.1: Sample spikes in trolley probe 1. Spikes are determined by being over a threshold
compared to the value predicted by interpolating their nearest neighbors. Figure courtesy
of S. Corrodi.

Figure 8.2: The azimuthally averaged (summed) error caused by trolley spikes, as a function
of the threshold in the definition of a trolley spike. Each color represents a separate trolley
NMR probe. Figure courtesy of S. Corrodi.
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tions of 1 Hz (16 ppb) is reasonable [50]. Further work using the same method of simulated
FIDs in gradient fields have corroborated this estimate, and found a reasonable average to
be 0.3 Hz (5 ppb) [51]. Each fixed probe station is synchronized to trolley data from about
2.5 deg on each side of the station, which is approximately 80 independent measurements.
This reduces the average value to less than 0.06 Hz (<1 ppb).

8.1.5 Trolley X-Y Displacement

The trolley’s rails’ radial and vertical positions depend on azimuth, an effect we call the
“swimming trolley”. As the trolley moves around the ring, the displacement of the trolley
couples to the radial and vertical gradients of the field (the higher order moments) as

dB

dx
δrms(x) (8.5)

and similarly for the y gradient. From Figure 8.3 and Figure 8.4, we estimate

dB

dx
≤ 2 ppm/4.5 cm (8.6)

and δrmsx ≈ 0.5 mm resulting in a systematic error of 11 ppb or 0.7 Hz.
Further refinement of this method of analysis includes effects from higher-order moments

aliasing into the lower-order moments, and the effects on the higher-order moment measure-
ments themselves [44]. This study concludes that the uncertainty on the average field m1 is
0.61 Hz (10 ppb). The uncertainty on m2 through m5, respectively, are 1.5 Hz, 0.1 Hz, 1.2
Hz, and 0.2 Hz. These uncertainties could be corrected with further surveys, but are small
enough compared to the current uncertainties from other systematic effects that corrections
would not significantly improve the final result.

8.1.6 Other Motional Effects

There are ongoing systematic studies into the effect on the trolley measurements caused
by the trolley moving as it takes data. By comparing field maps generated during continuous-
motion runs versus special “stepper” runs where the trolley is moved then stopped as it
measures, we can estimate the uncertainty caused by any other effects included by trolley
motion. Efforts are ongoing in the trolley analysis team to analyze and interpret these
studies, but a conservative estimate is less than 20 ppb on the azimuthal average [44].
Further analysis is needed at this time, as this is the dominant source of uncertainty in the
trolley systematic analysis.
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Figure 8.3: The radial and vertical gradients (normal and skew quadrupoles) couple with
the trolley’s xy position uncertainty. Figure courtesy of J. Grange.
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Figure 8.4: The surveyed excursions of the trolley from the muon ideal radius. Uncertainty
caused by the “swimming trolley” couples with the vertical and horizontal gradients. Figures
courtesy of J. Grange.
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8.2 Fixed Probe Systematics

The uncertainty caused by the fixed probes is a Type A uncertainty, so it decreases as
measurement time increases. The frequency noise (instability) was estimated from a time
series of FIDs that was assumed to have drift accurately parameterized by a 2nd-order
polynomial.The residuals from the fit were plotted as a histogram. The histogram was fit to
a gaussian that was found to have a width of 60 ppb, which is taken as an estimate of the
single shot noise from a single fixed probe. Assuming that the 378 probes have uncorrelated
uncertainties and are azimuthally-averaged, it takes only 10 sequential measurements of each
probe, or approximately 15 seconds, to reduce the uncertainty caused by the uncertainty on
the average of the fixed probe measurements to less than 1 ppb. Considering that the
shortest data sets are on the order of several days, this source of uncertainty is well below
other systematic effects in Table 8.1 and can be neglected.

8.3 Interpolation Systematics

8.3.1 Interpolation to Time Grid

The time-grid interpolation step is not a significant source of uncertainty beyond the
uncertainty from the fixed probe noise itself. This is because the time-grid interpolation
step preserves averaging, as discussed in Chapter VI. Because the final result will always be
averaged over time and the average of the interpolated points equals the average of the raw
data over the same time (by construction), the uncertainty on the time-averaged interpolated
point is the same as the uncertainty on time-averaged raw data points, which were discussed
in Sections 8.1 and 8.2.

8.3.2 Trolley Footprint Replacement

The trolley’s magnetic footprint must be removed from the fixed probe measurements
during a trolley run before the fixed probe station can be averaged to find a baseline using
the procedure is outlined in Chapter VI. To understand the systematic uncertainty caused by
this procedure, a study was performed using measurements from a fixed probe run (no trolley
present) and analyzed it as though it were a trolley run. The trolley footprint replacement
procedure was performed on the fixed probe data, and the replacement data set was compared
to the input data set, as in Figure 8.5.

By performing this study on every station in many input data sets with random simulated
trolley positions, we can histogram the differences between the baseline values from the
replacement data set and the baseline values from the actual data set. Results for the m1
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Figure 8.5: Top: Raw data taken from a fixed probe run and analyzed as a (fake) trolley run.
The orange section shows the vetoed region. Bottom: The same data after running through
the trolley footprint replacement algorithm. Note the similarities in the orange region.
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Figure 8.6: A histogram of the errors from averaging the m1 trolley footprint replacement
over 3600 differences. Note that the error of the mean is 0.48 Hz/

√
3600 = 0.008 Hz, so the

mean of the distribution is consistent with zero.

baseline different for N = 50 (3600 points) are shown in Figure 8.6. The same systematic
study can be performed on the higher order moments as well, as shown in Figure 8.7.

The centers of all five distributions are consistent with zero (see Figure 8.6), indicating
that the footprint replacement algorithm does not bias the results in either direction when
averaged over all 72 stations. We use the widths of the distributions as an estimate for the
uncertainty on the trolley footprint replacement. See Table 8.2 for the values.

8.3.3 Higher-Order Drifts

Trolley probe and fixed probe moments are synchronized during a trolley run, but the
magnetic field gradient drifts change the relationship between the synchronized mtr(0) and
mfp(0) values due to aliasing of higher-order gradients into the tracked fixed probe moments.
The amount that the trolley and fixed probes have drifted out of sync between two trolley
runs is the sync offset described in Chapter VI. The sync offset is the value c2 − c1 in
Equation 6.4. The distribution of the sync offsets from each station for each moment provides
information about how the higher-order field gradients have changed over the course of the
fixed probe run.
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Figure 8.7: A histogram of the errors from averaging the m2 through m5 trolley footprint
replacement over 3600 differences.

Moment Uncertainty (Hz) Uncertainty (ppb)
m1 0.48 7.8
m2 0.27 4.4
m3 0.14 2.3
m4 0.14 2.3
m5 0.33 5.3

Table 8.2: The systematic uncertainty caused by the trolley footprint replacement procedure
assigned to each of the first five moments. Note that this is a very conservative estimate
for the uncertainty of this step because it does not include the expect factor of

√
72 from

averaging the 72 stations. No assumption about the correlation (or lack thereof) of each
station is made.
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Since we do not know how the gradients are changing between trolley runs, we model
the error by assuming the sync-offset results from a random walk, which is a conservative
assumption regarding how the sync offset can change as a function of time between trolley
runs. During a random walk, the variance increases linearly with time, leading to

dσ2 = ∆M2

(
t

T

)
. (8.7)

where ∆M2 is the variance at the second trolley run at time T . Using the azimuthal average
of the sync offsets from the second trolley run to estimate ∆M2, the average uncertainty
over the data run can be calculated.

〈
σ2
〉
=

1

T

T∫
0

dt ∆M2 t

T
=

∆M2

2
. (8.8)

The previous result assumes that the interpolation is only pinned to the first trolley run.
However, ideally fixed probe runs are synced at both trolley runs, leading to nominally zero
uncertainties near each trolley run and a larger uncertainty between them. This situation
can be conservatively modeled as the uncertainties increasing linearly in time as the field
performs a random walk forward in time from the first trolley run. However, it is also
increasing in a similar fashion backwards in time from the second trolley run. The two
walks meet at a maximum in the center of the fixed probe run with a maximum uncertainty
dσ2 = ∆M2/2. The average uncertainty for the interval T in this case is

〈
σ2
〉
=

2

T

T/2∫
0

dt ∆M2 t

T
=

∆M2

4
. (8.9)

The sync offsets from the 60 hour data set are shown in Figure 8.8. Using the mean of the
sync offsets to estimate the azimuthally averaged ∆M2 for m1, we arrive at the uncertainty
caused by the higher-order gradient drift. Using the formula for forwards-backwards inter-
polation, 〈σm1〉 =

√
∆M2

m1
/2 = 5.12 Hz. A similar procedure is applied to each of the other

moments tracked by the fixed probes. The result for the 60 hour data set are summarized
in Table 8.3.

It is important to note that this systematic uncertainty includes the effects from many
different sources. Because each fixed probe station is synchronized to an average from the
trolley of approximately 5 deg, the sync offsets encode not just drift in vertical and radial
gradients, but also azimuthal gradients. This includes uncertainty caused by differential
drift around the ring. Consider the field map generated by a trolley run for the m1 moment.
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Figure 8.8: The sync offsets from the 60 hour data set for m1, by station. The average of
the sync offsets is used to estimate ∆M2. In this case, ∆M2 = (−10.2 Hz)2.

Moment Uncertainty (Hz) Uncertainty (ppb)
m1 5.12 82.8
m2 0.4222 6.83
m3 1.55 25.1
m4 0.354 5.72
m5 1.37 22.2

Table 8.3: The uncertainty from higher-order gradient drifts for the azimuthally averaged
moments in the 60 hour data set.
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There are approximately 4000 measurements of field distributed in azimuth, which means
that the trolley can track spatial Fourier components up to the Nyquist frequency N = 2000

term (see Figure 8.9). Compare this to the fixed probes. There are 72 stations roughly even
distributed in azimuth, meaning they can only track up through the N = 36 spatial Fourier
component. Any drift in higher Fourier components (specifically the harmonics of N = 36)
during the fixed probe run can alias into the N = 0 term, meaning that any changes in
the higher components will be incorrectly called a change in the azimuthal average [52]. In
azimuthal space, this consists of field drifts that cause sharp features that are either between
two fixed probe stations and therefore not observed, or at a fixed probe station and assumed
to be larger in azimuth than they are.

Because the trolley measurements are sensitive to these higher order effects, they reveal
any sharp features that have developed over the course of the fixed probe run, such as sharp
gradients at magnetic pole cracks. The difference between two consecutive trolley runs is
therefore a measurement of the influence of very high spatial frequency drift on the virtual
trolley measurements, shown in Figure 8.10. Issues would arise if there were a sharp feature
that developed between two fixed probe station, but vanished before another trolley run.
However, no long stationary trolley runs or fixed probe have seen evidence of such events
occurring. The sync offsets also include contributions from errors in fixed probe positions.
Any error in a fixed probe position would correspond to higher-order gradients aliasing into
the fixed probe moments in a way that is not accounted for by the change-of-basis matrix
or Jacobian.

8.3.4 Super-long Stationary Run

Stationary runs are systematic studies where the trolley is parked under given fixed
probe station for an extended period of time. These runs allow analyses of how the fixed
probe measurements evolve directly compared to the trolley measurements. They allow for
essentially continuous synchronization over long period of time, which reveals the evolution
of the synchronized values relative to each other. In other terms, they allow for us to observe
how the sync offsets evolve as a function of time. The super-long stationary run was a single
such run that lasted for 72 hours. The trolley was parked under station 22, a well-behaved
station with the standard 6-probe station geometry and a good signal-to-noise ratio for each
of its probes, and allowed to collect data continuously. Station 22 was selected because it is
in a region of the storage ring where every station has 6-probes, which would allow future
studies of the correlations between neighboring stations. The m1 measured by the trolley
and the m1 predicted by the fixed probe are shown in Figure 8.11.

We use this data to track how the sync offset evolves with respect to the averaging time.
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Figure 8.9: A single trolley run and its spatial FFT, showing the higher order spatial Fourier
terms.
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Figure 8.10: The difference of two consecutive trolley runs (separated by about 72 hours)
and the difference’s spatial FFT. Note that the higher Fourier terms drop off to under 1 Hz,
indicating that the differential drift is mostly in the lower order terms that are tracked by
the fixed probes.
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Figure 8.11: The dipole as measured by the trolley and predicted by the fixed probe during
the super-long stationary run for station 22 (see Figure 4.5 for position).
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This is best accomplished by examining the Allan deviation, which shows a measure of the
uncertainty involved with averaging measurements as a function of the averaging time τ . The
Allan deviation for the station 22 sync offset is shown in Figure 8.12. The slope of an Allan
plot can be used to indicate the kind of noise that is dominant for a given averaging time.
Random walks have a

√
τ dependence on averaging time and a slope of +1/2 (on the log-log

scale) in a plot of Allan deviation. The solid line shown in Figure 8.12 is consistent with a
random walk model of the sync drift. Its coefficient is 0.26Hz/

√
hr, which corresponds to a

total uncertainty of 15 Hz over a 60 hr period. This is consistent with the model above for
∆M2 estimated by the sync offsets. It should be noted that these two estimates come from
different data sets, and that the estimate for ∆M2 in Equation 8.7 is for the average of the
stations, while the estimate from the super-long stationary run is for only one station.

Figure 8.12: The Allan deviation of the station 22 m1 sync offset. For long averaging times,
the Allan deviation is dominated by random walk noise (the solid line).

8.3.5 Global Random Walk Rate Method

An additional proposed method for estimating the uncertainty caused by higher-order
moments drifts is to use the sync offsets from every trolley pair in Run 1 to estimate a single
random walk rate for the azimuthal average of the ring. Instead of using each trolley pair’s
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mean sync offset to estimate the random walk rate for that pair, we can use an average of
the rates from all the trolley pairs.

This method could improve on the current method used above by making the method
robust against over or underestimating the random walk rate based on only the final sync
offset. For instance, the synchronization error can drift away from the synchronization
values, and then back towards it, which would cause the estimate using only the final value
of the sync offset to underestimate the rate of the intermediate drift. Similarly, if the
synchronization error drifted away nearly linearly, the final sync offset would overestimate
the rate of the intermediate drift (recall that any linear component of the drift is removed
by the backward interpolation covered in Section 6.5).

There are 12 trolley run pairs in Run 1. The azimuthally averaged sync offset and
corresponding random walk rate for each are shown in Table 8.4. Taking the average of the
rates from each pair (except Endgame, pair 2) yields an estimated global rate for Run 1 of
0.0210 Hz/

√
sec. Over 72 hours between trolley runs, this leads to an estimated uncertainty

of 12.7 Hz, in line with the estimates discussed above. One benefit of this global method
is that the estimated uncertainty for each trolley pair becomes a function of just the time
between the trolley runs, which can inform future trolley run planning. However, this could
also be a drawback, as it means that the uncertainty estimate is agnostic to the specific
conditions of each run, such as the issue in Endgame pair 2 (see Section 9.4). Further
studies and analytic work are needed to assess the best way forward using this estimation
method.

8.4 Systematics Conclusion

Tables 8.5, 8.6, and 8.7 show the combined systematic uncertainties, added in quadrature,
from all the field sources discussed above for the 60 hour data set.

114



Trolley pair Average sync
offset (Hz)

Random walk
rate
(Hz/

√
sec)

Notes

60 hour -10.2 0.0198
9 day, pair 1 4.95 0.00953
9 day, pair 2 -12.7 0.0277
9 day, pair 3 -6.77 0.0137
9 day, pair 4 3.97 0.00895
Endgame, pair 2 29.4 0.0516 Magnetic disturbance dur-

ing run, see Section 9.4.
Endgame, pair 3 3.19 0.00624
Endgame, pair 4 -21.2 0.0374
Endgame, pair 5 13.9 0.0264
High kick, pair 1 -13.6 0.0283
High kick, pair 2 -4.86 0.0101
Low kick 9.07 0.0167
Average drift rate 0.0210 Not including Endgame,

pair 2.

Table 8.4: The azimuthally averaged sync offset and associate random walk rate for each
trolley pair in Run 1. Also, the average random walk rate, which can be used to estimate
the uncertainty caused by higher-order moment drifts between trolley runs.

m1 Interpolation
Source Description Error (ppb)
Type A — Independent for each VTM
Fixed probe shot noise Frequency extraction and shot noise 1 ppb
Type A/B — Independent for each trolley run (baseline measurement)
Trolley footprint removal 8 ppb
Trolley azimuthal position 5 ppb
Trolley spikes Can benefit from future correction 5 ppb
Trolley swimming X-Y motion in trolley 10 ppb
Trolley frequency extraction Averaged over stations azimuthally 1 ppb
Other trolley motion effects More in-depth studies underway 20 ppb
Type B — Cannot be improved by increased averaging time
Temperature drift 4 ppb/ ◦C× 2 ◦C 8 ppb
Plunging probe calibration 12 ppb
Interpolation uncertainty Using sync offsets and random walk model 83 ppb
Total 88 ppb

Table 8.5: Systematics for time- and azimuthally- averaged m1 interpolation (for the 60 hour
data set). See Chapter IX for total uncertainties for the other Run 1 data sets. Note that
these are conservative estimates.
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m2 Interpolation
Source Description Error (ppb)
Type A — Independent for each VTM
Fixed probe shot noise Frequency extraction and shot noise 1 ppb
Type A/B — Independent for each trolley run (baseline measurement)
Trolley footprint removal 8 ppb
Trolley azimuthal position 5 ppb
Trolley spikes Can benefit from future correction 5 ppb
Trolley swimming X-Y motion in trolley 26 ppb
Trolley frequency extraction Averaged over stations azimuthally 1 ppb
Other trolley motion effects More in-depth studies underway 20 ppb
Type B — Cannot be improved by increased averaging time
Temperature drift 4 ppb/ ◦C× 2 ◦C 8 ppb
Plunging probe calibration 6 ppb
Interpolation uncertainty Using sync offsets and random walk model 7 ppb
Total 38 ppb

Table 8.6: Systematics for time- and azimuthally- averaged m2 interpolation (for the 60 hour
data set). See Chapter IX for total uncertainties for the other Run 1 data sets. Note that
these are conservative estimates.

m3 Interpolation
Source Description Error (ppb)
Type A — Independent for each VTM
Fixed probe shot noise Frequency extraction and shot noise 1 ppb
Type A/B — Independent for each trolley run (baseline measurement)
Trolley footprint removal 8 ppb
Trolley azimuthal position 5 ppb
Trolley spikes Can benefit from future correction 5 ppb
Trolley swimming X-Y motion in trolley 2 ppb
Trolley frequency extraction Averaged over stations azimuthally 1 ppb
Other trolley motion effects More in-depth studies underway 20 ppb
Type B — Cannot be improved by increased averaging time
Temperature drift 4 ppb/ ◦C× 2 ◦C 8 ppb
Plunging probe calibration 6 ppb
Interpolation uncertainty Using sync offsets and random walk model 25 ppb
Total 37 ppb

Table 8.7: Systematics for time- and azimuthally- averaged m3 interpolation (for the 60 hour
data set). See Chapter IX for total uncertainties for the other Run 1 data sets. Note that
these are conservative estimates.
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CHAPTER IX

Summary of Run 1 Data Sets

9.1 Blinding Status

The field data are blinded at two levels. The absolute calibration of the plunging probe
is blinded by adding an unknown offset of ±100 ppb to each trolley calibration offset. This
addition blinds only the m1 moment. Because all of the other moments are differences of
probe measurements, so the blind cancels. Additionally, each of the two independent inter-
polation analyses (this dissertation records one such analysis) separately blinds m1 through
m5. These blinded moments have been used for any comparisons of the two analyses. During
an interpolation review in mid-2019, the 60 hour data set was unblinded by both analysis
teams. However, all the other data sets remain blinded. These blinds on the m1 moment
are ±62 Hz (1 ppm), and ±6.2 Hz (100 ppb) on the higher moments. This means that in
the following plots of the azimuthally-averaged moments for the 60 hour data set, the m1

moment is blinded at the 6.2 Hz level and the higher-order moments m2 through m5 are
unblinded. For the other data sets, the m1 moment is blinded at the 62 Hz level and the
higher-order moments m2 through m5 are blinded at the 6.2 Hz level. These blinds do not
influence the systematic uncertainty analyses.

9.2 60 Hour Data Set

The 60 hour data set represents a typical run bookended by trolley runs. No extreme
events such as the magnet dumping or the surface coil configurations changing occurred
during the course of the measurement, and the analysis includes the forward-backward sync
interpolation. The data are azimuthally averaged over the 72 stations and time averaged in
bins of 100 seconds for clarity in the plots in Figure 9.1. The uncertainties on the fully time
averaged moments are shown in Table 9.1. See Appendix A for further information about
the definition of the data sets and production data for all Run 1 data sets.
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(a)

(b)

(c)
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(d)

(e)

Figure 9.1: The azimuthally-averaged field moments from the 60 hour data set. Each point
is an average over 100 seconds. (a) through (e): m1 through m5, respectively.
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Source Uncertainty (Hz) (ppb)
Type A 0.06 1

Type A/B 1.4 23
Type B 0.62 10

m1 Trolley Swimming .62 10
Interpolation Uncertainty 5.12 82.8

Total 5.41 88
m2 Trolley Swimming 1.6 26

Interpolation Uncertainty 0.422 6.83
Total 2.35 38

m3 Trolley Swimming 0.12 2
Interpolation Uncertainty 1.55 25.1

Total 2.28 37
m4 Trolley Swimming 0.12 2

Interpolation Uncertainty 0.354 5.72
Total 1.7 28

m5 Trolley Swimming 1.6 26
Interpolation Uncertainty 1.37 22.2

Total 2.68 43

Table 9.1: A list of the uncertainties in the time averaged 60 hour data set. Note that the
moment-dependent systematics are tabulated separately.

9.3 9 Day Data Set

The 9 day data set consists of four trolley-bookended fixed probe runs. Each fixed probe
run is analyzed in the same way as the “typical run” of the 60 hour data set. The primary
difference is that some of the trolley runs can be used for backward synchronization on one
run, and then forward synchronization on the next run.

There were several data quality issues that occurred during this data set. The prevailing
issue was that electrical interference from the pulsing electric quadrupoles intermittently
caused a false trigger in the NMR probe multiplexers, causing a reading from an NMR
probe to be unusable. Implementing data-quality cuts to identify and label each of the these
false triggers so they can be dropped from the analysis is an ongoing effort at this time. This
created isolated instances when the time grid interpolates several times between fixed probe
readings. However, averaged over long periods, this makes no difference in the final result,
because the uncertainty associated with averaging the fixed probe measurements is so small.
For some of the noisier probes, automatic false trigger detection is difficult and improvement
is ongoing.

Occasionally, the false trigger occurred in a probe that was used in the power supply
feedback. The flawed measurement got averaged in to the feedback signal, causing the
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PSFB to incorrectly believe the average magnetic field had suddenly moved, so it would
begin to apply a correction to return to its set point. The next feedback measurement,
however, would be correct, so the PSFB would stop applying the correction, and instead
return to the proper set point. These times have been flagged for the ωa team to avoid
analyzing. However, they are still shown in Figure 9.2, but will be omitted automatically
during the time averaging step explained in Chapter VII.

There were two issues with the trolley runs during this data set. First, right after the
second trolley run (the end of the first fixed probe run) was completed, the magnet began
to slow dump (a process where it dumps the current in the superconducting coils to prevent
any possible damage from a detected environmental change). After the field was brought
down and back up, a third trolley run was performed. The consequence is that the second
trolley run can only be used for backward synchronization and that the third trolley run
is only used for forward synchronization. Second, after the fifth trolley run (the beginning
of the final fixed probe run), a study was performed that involved drastic changes to the
surface correction coil currents. Upon analyzing the final fixed probe run, it was discovered
that these changes led to large sync offsets, indicating that the synchronization doesn’t track
well over such studies. Therefore, the final fixed probe run is only synced to the sixth trolley
run and only synchronizes backwards.

The data shown here are azimuthally averaged over the 72 stations and time averaged in
bins of 100 seconds for clarity in the plots in Figure 9.1. The uncertainties of the fully time
averaged moments are shown in Table 9.1.

9.4 End Game Data Set

The end game data set is the longest continuous data set in Run 1, at approximately
23 days. It nominally consists of six fixed probe runs and nine trolley runs. However, due
to a hardware failure in the SCC crates during the first fixed probe run, that run has been
dropped entirely and is not included here. The second and third fixed probe runs were
bookended by independent trolley runs due to a magnet cycle that occurred between them
(trolley runs 2 and 3, and 4 and 5, respectively). The next three fixed probe runs occurred
consecutively; they are bookended by trolley pairs 6 and 7, 7 and 8, and 8 and 9. During the
second fixed probe run, a magnetic cable connector that was accidentally left near the field
was pulled against the vacuum chamber by the magnet, significantly perturbing the local
field abruptly. During trolley run 9, the magnet began to slow dump, preventing the trolley
run from completing. For this reason, fixed probe run 6 is only forward synced — trolley
run 9 is not used.
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(d)

(e)

Figure 9.2: The azimuthally-averaged field moments over the 9 day data set. Each point is
an average over 100 seconds. The 9 day data set is currently still blinded. (a) through (e):
m1 through m5, respectively.
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Source Uncertainty (Hz) (ppb)
Type A 0.06 <1

Type A/B 1.4 23
Type B 0.62 10

m1 Trolley Swimming .62 10
Interpolation Uncertainty 3.97 64

Total 4.35 70
m2 Trolley Swimming 1.6 26

Interpolation Uncertainty 5.00 81
Total 5.51 89

m3 Trolley Swimming 0.12 2
Interpolation Uncertainty 2.28 37

Total 2.83 46
m4 Trolley Swimming 0.12 2

Interpolation Uncertainty 0.346 6
Total 1.7 28

m5 Trolley Swimming 1.6 26
Interpolation Uncertainty 1.19 19

Total 2.59 42

Table 9.2: A list of the uncertainties in the time averaged 9 day data set. Note that the
moment-dependent systematics are tabulated separately.

Apart from the issues with fixed probe runs 1 and 2, and trolley run 9, the endgame
data set was very well behaved. The data shown here are azimuthally averaged over the 72
stations and time averaged in bins of 100 seconds for clarity in the plots in Figure 9.3. The
uncertainties in the fully time averaged moments are shown in Table 9.3.

9.5 High Kick Data Set

The high kick data set was approximately six days long and consists of two fixed probe
runs and three trolley runs. Both fixed probe runs are forward-backward synced, so the
second trolley run is used to synchronize both fixed probe runs. There was one PSFB event
during the second fixed probe run, which is shown in this data. However, the field data
quality team has flagged it for removal from the ωa analysis, so it will not influence the field
average in the end. The data shown here are azimuthally averaged over the 72 stations and
time averaged in bins of 100 seconds for clarity in the plots in Figure 9.4. The uncertainties
in the fully time averaged moments are shown in Table 9.4.
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(d)

(e)

Figure 9.3: The azimuthally-averaged field moments over the end game data set. Each point
is an average over 100 seconds. The end game data set is currently still blinded. (a) through
(e): m1 through m5, respectively.

126



Source Uncertainty (Hz) (ppb)
Type A 0.06 <1

Type A/B 1.4 23
Type B 0.62 10

m1 Trolley Swimming .62 10
Interpolation Uncertainty 12.8 207

Total 13.0 210
m2 Trolley Swimming 1.6 26

Interpolation Uncertainty 3.84 62
Total 4.48 73

m3 Trolley Swimming 0.12 2
Interpolation Uncertainty 1.07 17

Total 1.98 32
m4 Trolley Swimming 0.12 2

Interpolation Uncertainty 1.42 23
Total 2.19 35

m5 Trolley Swimming 1.6 26
Interpolation Uncertainty 4.56 74

Total 5.11 83

Table 9.3: A list of the uncertainties in the time averaged end game data set. Note that the
moment-dependent systematics are tabulated separately.

Source Uncertainty (Hz) (ppb)
Type A 0.06 <1

Type A/B 1.4 23
Type B 0.62 10

m1 Trolley Swimming .62 10
Interpolation Uncertainty 5.22 84

Total 5.51 89
m2 Trolley Swimming 1.6 26

Interpolation Uncertainty 3.01 49
Total 3.79 61

m3 Trolley Swimming 0.12 2
Interpolation Uncertainty 1.25 20

Total 2.08 34
m4 Trolley Swimming 0.12 2

Interpolation Uncertainty 0.588 10
Total 1.77 29

m5 Trolley Swimming 1.6 26
Interpolation Uncertainty 1.10 18

Total 2.56 41

Table 9.4: A list of the uncertainties in the time averaged high kick data set. Note that the
moment-dependent systematics are tabulated separately.
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(d)

(e)

Figure 9.4: The azimuthally-averaged field moments over the high kick data set. Each point
is an average over 100 seconds. The high kick data set is currently still blinded. (a) through
(e): m1 through m5, respectively.
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Source Uncertainty (Hz) (ppb)
Type A 0.06 <1

Type A/B 1.4 23
Type B 0.62 10

m1 Trolley Swimming .62 10
Interpolation Uncertainty 4.53 73

Total 4.87 79
m2 Trolley Swimming 1.6 26

Interpolation Uncertainty 0.194 3
Total 2.32 37

m3 Trolley Swimming 0.12 2
Interpolation Uncertainty 0.741 12

Total 1.82 30
m4 Trolley Swimming 0.12 2

Interpolation Uncertainty 0.423 7
Total 1.72 28

m5 Trolley Swimming 1.6 26
Interpolation Uncertainty 1.38 22

Total 2.69 44

Table 9.5: A list of the uncertainties in the time averaged low kick data set. Note that the
moment-dependent systematics are tabulated separately.

9.6 Low Kick Data Set

The low kick data set is another typical run bookended by trolley runs, with no extreme
events or configuration changes. It lasted approximately 3 days, and includes the forward-
backward sync interpolation. The data shown here are azimuthally averaged over the 72
stations and time averaged in bins of 100 seconds for clarity in the plots in Figure 9.5. The
uncertainties in the fully time averaged moments are shown in Table 9.5. Although this is
a good run from the perspective of the magnetic field, due to issues with the beam storage
systems, the ωa statistical and systematic uncertainties for this run would be quite large.
Therefore, these data are not currently used in the Run 1 analysis.
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(d)

(e)

Figure 9.5: The azimuthally-averaged field moments over the low kick data set. Each point
is an average over 100 seconds. The low kick data set is currently still blinded. (a) through
(e): m1 through m5, respectively.
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CHAPTER X

Conclusions and Outlook

This work presented an analysis of the full field maps for the five primary data sets from
Run 1, as well as conservative estimates of the systematic uncertainties for each data set.
The systematic uncertainties are dominated by the sync offset estimate of the higher-order
gradient drift. As mentioned in Section 8.3, however, these estimates represent a conserva-
tive estimate of the azimuthal average. More dedicated studies are needed to determine the
correct correlation between the stations (see Figure 8.11). This work also presented a frame-
work for performing the muon-weighted average of the field map to determine ω̃p. The actual
averaging is awaiting input from the beam dynamics, tracker, and ωa analyses. The current
estimates of the systematic uncertainties from the Run 1 data sets all exceed the 70 ppb error
budget allocated to the field analysis for the experiment (see Table 3.2). The interpolation
uncertainty estimates for each data set (See summary tables in Chapter IX), in particular,
exceed the budgeted 30 ppb. Improvements to the magnet, data taking procedures, and
analysis all need to be made to reduce the systematic uncertainties to the budgeted level.

10.1 Future Work

The framework presented in this dissertation is a complete algorithm for calculating
field maps given input trolley and fixed probe runs. Final production data sets are not yet
available, but when they are, the tools are in place to analyze them. Future work on this
analysis is primarily aimed at folding in the beam dynamics and straw tracker analyses to
complete the muon-weighted average. By integrating the full field maps produced in this
dissertation into the beam tracking simulations, more accurate models of the beam profile
in the ring can be generated, which in turn can improve the field average. Further work is
also needed to properly average the ratio of the the muon-weighted field average ω̃′

p with the
measurement of the anomaly frequency ωa in Equation 3.5 to calculate a value for aµ.
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There is also the possibility of moving to an interpolation framework based on 3D field
moments, instead of the 2D moments used in this analysis. A fully 3D framework has the
advantage of being better motivated physically. The 2D moment derivation assumes that
there is no dependence of the field on the third dimension. There have been several attempts
to derive an accurate framework for 3D moments, but so far, none have been implemented
in the full interpolation.

The largest source of uncertainty in the interpolation comes from the higher-order mo-
ment drift, estimated by the sync offsets. Further studies that correlate the trolley and fixed
probe measurements over long periods of time (see Section 8.3.4) would ideally be performed
at all 72 stations. A model of the time dependence of higher-order moment drift would help
correct the fixed probe measurements, and reduce the uncertainty in the field measurement
by determining the station-wise correlations in the sync offsets. Further studies that corre-
late the sync offsets to differences in the higher-order moments between trolley runs could
also be performed to support Concept 1. Such a model might be generated by an in-depth
analysis of the diurnal field cycles and the temperature of the magnet, although both are very
complicated and would require detailed dedicated studies. An improved trolley run method
would also improve the interpolation uncertainty, which is dominated by stations with poor
resolution. In Run 1, the trolley continuously moved as it mapped the field, but this method
introduces uncertainty from both the motional effects and by reducing the averaging time for
poor resolution fixed probe stations to synchronize with the trolley. More frequent trolley
runs could also minimize the uncertainties caused by higher-order moment drifts.
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APPENDIX A

Data Set Definitions

Production data are generated from the raw data by the field production team. The
production data sets include the extracted frequencies from the NMR probes, the trolley
positions, and data quality flags that mark individual events as good or problematic. The
framework that produces the production data is still being updated as improved frequency
extraction algorithms are implemented and new methods for flagging poor quality data
are developed. The production data used in this work are from version v9_20_00 of the
production. Table A.1 lists all of the production data runs by data set in Run 1, as well as
the dates of each data set.

Date (2018) Name Trolley Runs Fixed Probe Runs Notes
4/22 - 4/24 60 Hour 3956, 3997 3959-3994
4/26 - 5/02 High Kick 4058, 4098,

4138
4061-4095, 4101-4121,
4123-4136

No run 4122 exists.

5/04 - 5/12 9 Day 4138, 4181,
4189, 4226,
4265, 4493

4141-4179, 4193-4222,
4229-4262, 4283-4488

5/17 - 5/19 Low Kick 4539, 4584 4542-4581
6/06 - 6/29 End Game 4997, 5054,

5105, 5117,
5157, 5169,
5217, 5259,
5303

5000-5049, 5057-5100,
5120-5154, 5172-5214,
5220-5256, 5262-5300

Trolley run 5303 did
not complete.

Table A.1: The data sets referenced in this work, and the field run numbers associated with
them.
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