Lecture 15: The Neurosystem

- The central nervous system
 - Brain
 - Sensory processing
 - Response
 - Motor control
 - Cognition and behavior
 - Memory
 - Spinal
- Peripheral somatic division
- Peripheral autonomic nervous system

Organization

Cerebrum, cerebellum, brainstem, spinal cord analyze and integrate sensory and motor information

SENSORY COMPONENTS

Sensory ganglia/nerves

Sensory receptors (surface and internal)

ENVIRONMENT
(external)
BODY FUNCTION
(internal)

MOTOR COMPONENTS

AUTONOMIC SYSTEM Sympathetic

(fight or flight)

Parasympathetic (visceral function)

Enteric

Autonomic ganglia/nerves

SOMATIC SYSTEM

Motor nerves

EFFECTORS

Smooth muscle Cardiac muscle Glands

Skeletal muscle

Neurons are Nerve Cells

Specialized for ELECTRICAL telecommunication

- Variety of mophologies & functions
- Glial cells are NOT glue:
 - maintain ionic concentrations, modulate nerve signal processing, modulate synaptic action, control neurotransmitters

Neurons are organized into Circuits

- Neurons conduct in one direction (diodes?)
 - Afferent (transmit toward central nervous system)
 - Efferent (transmit away from central nervous system)
 - Interneurons

e.g. Knee Jerk Reflex:

Nerve Conduction

• Nerve signals PROPOGATE moving CHARGE (ionic concentrations)

CAPACITOR (cylindrical)

 $C/L = 2\pi \square \ln \ln(b/a) \sim a/t$

b=a+t a=10 μ m, t = 0.1 μ m C/L= 5.5 pF/mm

Ionic Concentration Gradients

Squid Neuron (mM)

	Intracellular	Extracellular
K ⁺	400	20
Na ⁺	50	440
Cl-	40-150	560
Ca++	0.0001	10
Mg+	+ 10	50
A-	345	50

Mammalian Neuron (mM)

	Intracellular	Extracellular
K+	140	5
Na ⁺	5-15	145
Cl-	4-30	110
Ca++	0.0001	1-2
Mg+	+ 15	1
A-	75	15

Goldman Equation - Nernst Potential

$$C_{p_{\blacktriangle}}/C_{p_{\blacktriangledown}} = e^{2\square B/kT} (NMR)$$
 $[X_{out}]/[X_{in}] = e^{qV/kT}$

$$V = (kT/ze) ln \left\{ \left[\prod_{x} P_x[X_{out}] / \left[\prod_{x} P_x[X_{in}] \right] \right\} \sim 58 mV log_{10} \left\{ [K^+_{out}] / [K^+_{in}] \right\}$$
 permeability

= -84 mV (resting potential)

Mammalian Neuron (mM)

	Intra	cellular	
	Extracell	lular	
K ⁺	140		5
Na ⁺	5-15		145
Cl-	4-30		110
Ca ⁺⁺	0.0001		1-2
Mg ⁺⁺	15		1
A^{-}	75		15

Action Potential

ION CHANNELS move ions WITH concentration gradients
ION PUMPS move ions AGAINST concentration gradients
ION PERMEABILITY CHANGES (in response to [Na⁺]

$$V = (kT/ze) ln \left\{ \left[\left[_{x}P_{x}[X_{out}] / \left[\right]_{x}P_{x}[X_{in}] \right] \right\}$$

Conduction Velocity and Time

 $Q(t) \sim e^{-t/RC}$

CAPACITOR (cylindrical)

C/L = $2\pi \Box_0 \Box / \ln(b/a) \sim a/t$ b=a+t a=10 μ m, t = 0.1 μ m C/L= 5.5 pF/mm

RESISTANCE=1/CONDUCTANCE (active and passive)

SQUID: Large Axon Reduces Resistance

MAMMAL: myelin wrapping of axon decreases diameter and C

Velocity: 100-150 m/s for myelinated axons

Nerve Conduction

Stimulus Depolarizes Membrane

Equivalent Circuit

Resistance R~ $(1/P_K)[K_{in}^+]/[K_{out}^+]$

The BRAIN

