
Physics 290 – Winter 2004

Assignement 3

Due January 29, 2004

- 1. Find the wavelength and frequency of photons of the following energy:
 - a.) 50 keV x-rays
 - b.) 0.511 MeV gamma rays
- 2. Find the attenuation of 50 keV, monoenergetic x-rays in the following thicknesses of material (see table at the bottom of the page):
 - a.) 3 cm of typical bone.
 - b.) 20 cm of air $\frac{I}{I_0} = 1.00$ c.) 20 cm of soft tissue (or water)

 - d.) 3 cm of bone immersed in 20 cm of tissue
 - e.) 1 cm of lead
- 3. The x-ray attenuation coefficients (μ) for muscle ($\rho \approx 1 \text{ gm/cm}^3$) and bone ($\rho = 1.9$ gm/cm³) at 50 keV and 70 keV are given below. Sketch the x-ray image and find the bone/tissue contrast for the upper leg model for each energy shown below. This is a cross section of the leg.

X-rays are incident from the left onto a film plate at the right.

Contrast is related to the ratio of the difference between the maximum and minimum silver density of the exposed film by $C = \frac{O_{max}}{O_{min}}$.

Material	$\mu (50 \text{ keV})$	$\mu \ (70 \ \mathrm{keV})$	ho
$Air(N_2)$	$0.03~\mathrm{cm^2/gm}$		$1.2 \times 10^{-3} \text{ gm/cm}^3$
Water	$0.21~\mathrm{cm^2/gm}$		$1 \mathrm{~gm/cm^3}$
Muscle	$0.20~\mathrm{cm^2/gm}$	$0.18~\mathrm{cm^2/gm}$	$1 \mathrm{~gm/cm^3}$
Fat	$0.17~\mathrm{cm^2/gm}$		$0.9~\mathrm{gm/cm^3}$
Bone	$0.30~\mathrm{cm^2/gm}$	$0.20~\mathrm{cm^2/gm}$	$1.9~\mathrm{gm/cm^3}$
Pb	$6 \text{ cm}^2/\text{gm}$		$11.3~\mathrm{gm/cm^3}$