Physics 290 – Winter 2004

Assignement 6

Due March 11, 2004

The nuclear mangetic moment of ¹³C is $\mu(^{13}C) = 0.702\mu_N$. Recall that the proton moment is $\mu(^{1}H) = 2.79\mu_N$. The isotopic abundance $[^{13}C]/[^{12}C] \approx 0.011$ (1.1%).

1. What is the NMR frequency of ${}^{13}C$ at a magnetic field of 1.5 T?

2. Find the magnetization density of protons and ¹³C in glucose (C₆H₁₂O₆) with density $\rho = 2.4 \text{ gm/cm}^3$.

3. The chemical shift of fat vs tissue (water) protons is 3.5 ppm. What is the chemical frequency shift in Hz at 1.5 T?

The T_1 and T_2 of protons in grey matter and white matter (brain tissue) are given below.

Table 1: Typical relaxation times for protons in brain tissue [?].

	T_1	T_2
Grey Matter	$1000 \mathrm{ms}$	110 ms
White Matter	$650 \mathrm{ms}$	$70 \mathrm{ms}$

A spin echo sequence is designed as follows:

 $t = 0 \quad \pi/2$ pulse

 $t = 100ms \quad \pi$ pulse

$$t = 200ms$$
 π pulse

4. Sketch graphs of M_z and M_x as functions of time for t = 0 to t = 1000 ms.

5. Which tissue (grey or white) will appear darker (less signal) in a T_2 weighted image.

6. Gadolinium contrast agent shortens T_1 . After injection it is carried to tissue by blood perfusion, which is generally increased in a tumor. How would a tumor appear different than adjacent normal tissue in a T_1 weighted MRI?