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CHAPTER 1

Quantum Computing: History, Requirements and Candidate

Implementations

Quantum computing, simply put, is a form of computing in which the execu-

tion of computational operations relies on quantum mechanical phenomena, namely,

quantum superposition and entanglement [1–3]. Over the better part of the last

three decades, quantum computing has become both an intensely pursued interdisci-

plinary field of research and a topic of fascination in popular culture. The primary

reasons for this interest and fascination are the theoretical demonstrations of the

superior performance of a quantum computer over the standard classical computer

for a variety of tasks [2, 4–6] such as the determination of the prime factors of a

large number [7–9], the searching of an unsorted database [10, 11], the simulation

of quantum mechanical systems [1, 12, 13], the estimation of partition functions in

thermodynamical systems [14–16] and the solving of linear systems of equations [17].

As a result of these theoretical discoveries, there has been a considerable amount

of experimental effort aimed at verifying these theoretical results and developing a

scalable physical system for practical quantum computing. Because experimental en-

deavors are still in their infancy, current research efforts are spread across several

different candidate physical systems with a clear-cut “winner” yet to emerge. Semi-

conductor quantum dots (QDs) containing a single charge are considered as one of the

leading candidate systems for quantum computing [18,19] and are the subject of this

thesis. More specifically, the work presented here focuses on the optical spectroscopy

and control of the spin states of an electron confined in a single self-assembled InAs

1
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QD for the execution of gate operations that are foundational for quantum computa-

tion.

In this Chapter, we first discuss the history behind the field of quantum computing

and the reasons for its impact on the fields of computing and cryptography. The

basic requirements for a working quantum computer, commonly referred to as the

DiVincenzo criteria [20], are then discussed, followed by a rudimentary survey of

some of the physical systems that have been proposed for the implementation of a

quantum computer. Finally, an outline of the thesis is given that summarizes the

topics covered in each Chapter.

1.1 A Brief History of Quantum Computing

The concept of a quantum computer is generally considered to have first been

introduced in a lecture given by Richard P. Feynman [1] at the First Conference on

the Physics of Computation held at the Massachusetts Institute of Technology in

1981 [21, 22]. In this lecture, Feynman emphasized the inability of a computing ma-

chine operating purely on classical principles to efficiently simulate quantum systems,

as the number of classical computing resources required increases exponentially with

the number of degrees of freedom in the system. In musing on a possible alternative,

he then posited as to whether “quantum computers,” i.e. computers whose elements

are inherently quantum mechanical in nature, would be able to simulate any given

quantum mechanical system accurately. Oddly, this highly insightful conjecture did

little to ignite the field of quantum computing at the time, with Feynman himself

leaving the question of quantum simulation open and choosing instead to focus fol-

lowing work on the theoretical operation of a quantum computer in the context of

thermodynamic reversibility and free energy dissipation [23, 24]. The proof of Feyn-

man’s conjecture would take nearly 15 years to arrive, provided by Seth Lloyd in

1996 [13].

Prior to the arrival of Lloyd’s proof, however, David Deutsch gave the field of

quantum computing a critical boost in 1985 [2] by showing that the “quantum par-
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allelism” provided by a quantum computer would enable the performance of certain

tasks more quickly than with a classical computer. This demonstration was followed

by a proof of the existence of a universal quantum gate by Deutsch in 1989 [4] and

the discovery by Deutsch and Jozsa in 1992 [5] of an entire class of computational

problems that are more efficiently solved by a quantum computer. Progress in finding

quantum algorithms that provided superior performance over their classical counter-

parts began to gain momentum following these achievements and led to a number of

key discoveries including Peter Shor’s factoring and discrete logarithm algorithms in

1994 [7] and Lov Grover’s database search algorithm in 1996 [10].

Of all these discoveries, however, it was Shor’s fast factoring and discrete log-

arithm algorithms that brought quantum computing into the limelight due to the

repercussions of these discoveries on public-key cryptosystems [3]. The security of

the Rivest-Shamir-Adleman (RSA) encryption protocol [25], a widely used protocol

for internet transactions, and the elliptic curve encryption protocol [26, 27] is based,

respectively, on the difficulty of determining the prime factors of a large number and of

solving the discrete logarithm problem, with either problem requiring an impractical

amount of classical computing resources and runtime for sufficiently large numbers.

As the implementation of Shor’s algorithms on a quantum computer would render

these protocols insecure, his discoveries engendered a paradigm shift in the field of

cryptography [28–34] and resulted in an acute increase of interest in (and government

funding of) research on quantum computing worldwide.

With the ever-growing list of tasks that would be more efficiently performed on

a quantum computer, the current drive is to develop a practical physical system for

the implementation of a working quantum computer. To assess the advantages and

disadvantages of the various physical systems that have been proposed, it is beneficial

to more fundamentally understand the requirements for a working quantum computer

in any given physical system. It is these requirements that we now discuss.

1.2 The Requirements for Quantum Computing
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For any physical system, there exists a fundamental set of requirements that

must be satisfied for the implementation of quantum computing. These requirements

describe the necessary properties of the system elements that serve as the quantum

bits (qubits), e.g. the spin states of individual charges or the energy levels of an atom,

both individually and collectively as well as the means by which these elements are

controlled. These criteria are typically referred to as the DiVincenzo criteria, after

David P. DiVincenzo of IBM, and are given below [20]:

1. A scalable physical system with well characterized qubits.

2. The ability to initialize the state of the qubits to a simple fiducial state, such

as ∣000...⟩.

3. Long relevant decoherence times, much longer than the gate operation time.

4. A “universal” set of quantum gates.

5. A qubit-specific measurement capability.

The first and third criteria concern properties that are inherent to the physi-

cal system in question. Scalability refers to the ability to construct an architecture

consisting of a sufficiently large number of individual qubits and is one of the pri-

mary challenges in developing a practical quantum computer. For instance, nuclear

spins of molecules in a liquid as implemented in NMR quantum computing [35] have

shown considerable success in implementing quantum algorithms for up to several

qubits [36–38], but because the total number of qubits is restricted to the number

of nuclei in each molecule, this approach is not sufficiently scalable for a working

quantum computer.

In addition to scalability, individual qubits in the system must possess a suffi-

ciently long (de)coherence time, i.e. a characteristic timescale indicating the rate at

which coherent superpositions deteriorate. As it is these superposition states that

provide the quantum parallelism that is central to the power of quantum computing,

their deterioration limits the duration during which quantum gate operations may be
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performed. Thus, ideal systems are those in which qubit coherence times are much

longer than quantum gate operation times, thereby enabling the execution of entire

quantum algorithms well within the qubit coherence time.

The second, fourth and fifth criteria all deal with the ability to interface with the

proposed physical system, encapsulating the entire computational process of prepa-

ration, manipulation and read-out. Preparation of the qubits to a pure state such

as ∣000...⟩ or ∣111...⟩ provides the starting point of the computational process, after

which the desired quantum algorithm is executed by the set of universal quantum

gates, i.e. a set of single and multi-qubit gates that may be combined to construct

any unitary operation on any given number of qubits [39]. Read-out, the final stage

of the computational process, returns the result of the computation for a particu-

lar qubit, ideally without affecting the other qubits in the system. In any read-out

scheme, it is crucial to quantify the efficiency of the read-out method so as to deter-

mine how many repeated computations are required to achieve sufficiently accurate

measurements.

With an understanding of the DiVincenzo criteria in hand, we now briefly survey

the various physical systems that have been proposed for quantum computing, viewing

their progress in the context of these criteria.

1.3 Candidate Physical Systems for Quantum Computing

In this section we consider some of the candidate implementations of quantum

computing, focusing on those systems that have had some success in demonstrating

progress towards executing quantum algorithms. As such, systems heralded for their

use in quantum communication schemes, such as cavity QED systems [40–42], are

not considered here.

1.3.1 Trapped Ions

Ion trap quantum computing is one of the most mature implementations of quan-

tum computing. This approach employs linear arrays of charged atoms laser cooled to
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near the zero-point energy [43] and confined in a quadrupole ion trap [44] to perform

quantum computations [45–47]. Qubit states in this scheme are the internal states of

each ion, which can be the atomic ground state plus an excited state (optical qubits)

or two ground state hyperfine levels (hyperfine qubits). Qubit coherence times in

either case are very long, approaching seconds and even minutes in the hyperfine

case [48], making such qubits highly attractive for quantum computing. For compu-

tations, individual qubits are manipulated optically [49] with qubit coupling achieved

via the externally controllable Coulomb interaction between ions in the array [45,50].

In addition to possessing long coherence times, trapped ion qubits have been shown

to satisfy the DiVincenzo criteria for initialization [43,51,52], universal gates [52–54]

and read-out [52,55]. As for scalability, the original proposal by Cirac and Zoller [45]

for a single linear array was restricted to at most tens of ions in a single linear

trap [46, 56], limiting the potential for scalability. To mediate this, recent schemes

have employed the use of networks of linear traps [46,57] or anharmonic ion traps [58]

to enable the possibility of large-scale quantum computing with trapped ions.

1.3.2 Nuclear Spins in Molecules

This form of quantum computing is based on the use of nuclear spins in a molecule

as the qubit states, which have been shown to possess coherence times on the order

of 103 s when sufficiently isolated from their environments [59,60]. Because molecules

are generally much more difficult to trap than ions, optical approaches to quantum

computing analogous to those employed with trapped ions have proven elusive [3].

Instead, practical schemes employing these nuclear spins rely on nuclear magnetic

resonance (NMR) techniques with radio frequency (RF) pulses to manipulate and

read-out the nuclear spin states [35]. These techniques, however, require a very high

number of nuclear spins to achieve a sufficiently high read-out signal. As a result,

experiments are typically performed with a molecular liquid at room temperature con-

taining on the order of 1023 identical molecules in thermal equilibrium. The molecules

in the liquid are taken to be non-interacting as the inter-molecular interactions gen-
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erally average out [60].

For the computational process, the ensemble of nuclear spins is perturbed from the

completely mixed case by an externally applied DC magnetic field. This perturbation

leads to a deviation from the completely mixed ensemble density matrix ½ that can

be used to investigate system dynamics. This “deviation density matrix” [35] serves

as the initial state of the computation, setting NMR quantum computing apart from

other approaches as the initial state of the computation is not a pure state but some

mixture that depends on system parameters. Despite the inability to initialize the

system to a pure state, NMR quantum computing has demonstrated a number of

quantum algorithms such as the Deutsch-Jozsa algorithm [61,62], Grover’s search al-

gorithm [36] and Shor’s factoring algorithm [38]. Despite these successes, the inability

to scale the number of usable qubits remains a major drawback for NMR quantum

computing, with no practical solution currently in sight.

1.3.3 Electron and Nuclear Spins in Diamond

Given the limitations of NMR quantum computing with molecular liquids, the

desire to utilize isolated nuclear spins for quantum computing has led to considera-

tions of solid state systems for their implementation. One such solid state system is

diamond, in which the nuclear spin states of 13C atoms in the vicinity of a nitrogen-

vacancy (NV) center can be manipulated via the hyperfine coupling between the 13C

nuclear spin and the NV center electron spin. One advantage with this approach is the

ability to optically detect NV center fluorescence [63], enabling studies of individual

electron and nuclear spin states without having to resort to ensemble measurements

as with liquid systems. In addition, this system has been shown to possess electron

spin coherence times as long as 350 ¹s [64] and comparable nuclear spin coherence

times [65,66] at room temperature.

Studies to date have demonstrated the coherent control of the NV center electron

spin [67] and the nuclear spin of a nearby 13C atom [65, 66] as well as the coherent

coupling between the electron and nuclear spins [68]. Initialization of both electron
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[64] and nuclear [65] spins has also been shown by employing various combinations

of optical, RF and microwave (MW) fields. Nuclear spin initialization has been used

to demonstrate a controlled rotation (CROT) gate, a gate that rotates the target

bit depending on the state of the control bit, with the NV center electron spin and

a nuclear spin serving as the control and target bits, respectively [65]. In addition,

this system has been used to demonstrate the successful entanglement of two 13C

nuclear spins as well as the entanglement of the NV center electron spin with two

13C nuclear spins [66]. Scalability appears to pose a substantial hurdle for practical

implementation, though proposed schemes utilizing distant NV centers in conjunction

with optical cavities [69] may provide a potential solution.

1.3.4 Phosphorous Donors in Si (Kane Quantum Computer)

Another proposed implementation of quantum computing that calls upon the use

of nuclear spins in a solid state system is the Kane quantum computer [70]. In this

implementation, a silicon substrate consisting of isotopically pure 28Si is implanted

with an array of equally-spaced individual 31P atoms, each possessing a nuclear spin

and a donor electron spin. As with the diamond system, both nuclear and electron

spins are capable of possessing long coherence times on the order of ms, though in this

case such coherence times generally require that the structure be kept at liquid helium

temperatures [71]. The nuclear spins serve as the qubits, with the donor electrons

serving both to mediate the interaction between multiple qubits and to provide a

read-out signal. In computation, single qubit operations are performed by controlling

the hyperfine interaction between the nuclear spin and the donor electron spin via

a metal gate located above each 31P atom (“A gates”), while operations involving

two adjacent qubits may be performed by controlling the exchange coupling between

the two donor electrons via a metal gate located above the space between the 31P

atoms (“J gates”). Read-out of individual qubits is performed by the electron nuclear

double resonance (ENDOR) method [71–73], which effectively measures the state of

the nuclear spin via the donor electron.
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The Kane quantum computer would provide a convenient system for single and

multi-qubit manipulations as well as read-out, in addition to being highly scalable.

The currently prevailing challenge in developing a Kane quantum computer is fabri-

cating Si structures that are doped with single, evenly-spaced 31P atoms [74–76].

Because efforts have predominantly focused on improving fabrication technology,

progress towards satisfying the DiVincenzo criteria has been limited, though there

have been demonstrations of electron and nuclear spin manipulation [73], successful

gate control of the localization of the donor electron wavefunction [77] and the suc-

cessful coherent transfer of superposition states back and forth between the electron

and nuclear spins [78].

1.3.5 Superconducting Circuits

Superconducting circuit quantum computers are based on two effects: the quanti-

zation of the magnetic flux in a superconducting loop and the macroscopic quantum

tunneling of electrons through the insulating barrier between two superconductors

in a Josephson junction [79–81]. These two effects result in the manifestation of

quantum phenomena on macroscopic scales and can be used to form three different

types of qubits based on the macroscopic flux, charge and phase of superconducting

circuits [81–83]. The differences between the different types of qubits are beyond the

scope of this rudimentary survey, though an excellent discussion of the different types

is provided in Reference [81].

Regardless the type, superconducting qubits offer coherence times on the order

of microseconds [84, 85] and straightforward scalability but are highly susceptible to

electronic noise and require very low operating temperatures on the order of mil-

liKelvin [81, 84, 85]. Despite these difficulties, superconducting circuits have demon-

strated single- [86,87] and multi-qubit [88,89] operations as well as single-qubit read-

out [83, 90]. Recently [85], a two-qubit quantum processor was demonstrated using

two superconducting charge qubits coupled by a transmission line cavity [91]. This

processor was able to demonstrate both the Deutsch-Jozsa and Grover search algo-
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Figure 1.1: Energy density of states for structures of different dimensionality (reproduced with

permission from Y. Wu).

rithms, demonstrating progress towards the development of a processor with a higher

number of superconducting qubits.

1.3.6 Quantum Dots

Traditionally, the term “quantum dot” has referred to semiconductor nanostruc-

tures that are enclosed by a larger-bandgap material and capable of confining carriers

such as electron-hole pairs (excitons), electrons and holes to volumes with dimen-

sions are on the order of the Bohr radius or the de Broglie wavelength of the carrier,

leading to an atom-like energy density of states (Figure 1.1) [92–95]. This term has

since grown to include metallic structures [96–98], carbon nanotubes [99, 100] and

gate electrodes that spatially confine a small number of electrons out of a 2D elec-

tron gas [101–104]. Both electrostatically defined QDs [18, 104] and semiconductor

QDs [19,105,106] have been proposed for quantum computing, with each approach of-

fering a unique set of advantages and disadvantages. In both systems, current efforts

generally focus on using the spin states of single charges confined in QDs, though pre-

vious work in semiconductor QDs has demonstrated optical gates with exciton-based

qubits [107,108].
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Electron spins in electrostatically defined QDs have been shown to possess life-

times on the order of tens of ms [109–111] and coherence times in the range of

100 ¹s [104, 112] at liquid helium temperatures and are capable of single-shot read-

out [110,111]. Approaches to the coherent control of confined spins generally fall into

two categories, electrical [112, 113] and magnetic [114] control, either of which may

be straightforwardly implemented “on-chip” in a quantum computing architecture.

Single spin manipulations generally require tens of ns to execute [113] while
√
SWAP

operations that switch the spin states of electrons in two laterally coupled dots [103]

require ∼ 180 ps [112]. One drawback at present, however, is that neither electric nor

magnetic approaches have demonstrated high fidelity initialization of single spins to

a fiducial state. In addition, the fabrication of multiply coupled spin qubits remains

a significant challenge, presenting a hurdle for scalable architectures [104].

As with electrostatically defined QDs, electron spins confined in semiconductor

QDs at liquid helium temperatures have also been shown to possess lifetimes as long

as tens of ms [115]. For electrons, intrinsic coherence times on the order of ¹s [116,117]

have been observed, though the hyperfine interaction between the electron spin and

the QD nuclei leads to an inhomogeneously broadened spin coherence time on the

order of nanoseconds [112, 118–121]. Unwanted contributions from the nuclear field

may potentially be avoided by using the spin states of QD confined holes, as their

wavefunctions are “p-like” in nature and interact with a much reduced number of

QD nuclei as a result of the smaller wavefunction values in the QD [122–125]. These

spins have demonstrated lifetimes on the order of hundreds of ¹s [123] and have

very recently been shown to possess coherence times on the order of several hundred

ns [125].

For either type of carrier, spin manipulations in semiconductor QDs are performed

optically. This approach has demonstrated high-fidelity initialization of a single spin

to a pure state [126–129] as well as fast coherent control of an electron spin on

picosecond timescales [130, 131], with ultrafast coherent control possible in principle

[132, 133]. The potential to perform ultrafast optical manipulations of QD confined

spins is a powerful advantage of this approach that would allow a very high number of
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gate operations to be performed within the spin coherence time. As of yet, however,

a scalable architecture of semiconductor QDs has yet to be realized, though work is

being done currently to develop such architectures using either QDs with 2D photonic

crystal cavities [134,135] or planar arrays of QDs in a 1D Bragg cavity [136,137].

1.4 Thesis Outline

Experiments in this thesis are performed on self-assembled InAs QDs [92, 138].

The general properties of these dots and the process by which they are grown are

discussed in Chapter 2. This Chapter also discusses the structural properties of the

sample studied and how they influence single QD studies. Basic bandstructure and

carrier properties are also discussed, emphasizing the relevant energy levels of a QD

charged with a single electron and the selection rules for the lowest lying optical

excitations with and without an externally applied DC magnetic field.

Chapter 3 covers the theoretical foundations for the coherent time-resolved op-

tical spectroscopy of a single InAs QD with picosecond pulses based on the density

matrix formalism. Theoretical results provide the mathematical form of experimental

signals obtained in one- and two-pulse studies using phase-sensitive detection tech-

niques. These results demonstrate the ability to read out the quantum state of a

single InAs dot with a single pulse and to measure transient phenomena in two-pulses

studies. These transient phenomena include the generation and decay of excited state

population in the dot and spin precession in the presence of an externally applied DC

magnetic field.

Experimental efforts to verify these theoretical results are presented in Chapter 4,

which first discusses the experimental setup employed in all studies covered in this

thesis. The basic QD characterization process is also discussed, including the photo-

luminescence (PL) and Stark shift modulation absorption studies that provide crucial

knowledge of the regime in which the QD interacts with incident light. Studies per-

formed with optical pulses indeed verify the theoretical results of Chapter 3, enabling

the determination of excited state relaxation times and the g-factors of precessing
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spins in the QD.

In Chapter 5, the theory of possible single spin qubit gates in an InAs QD is

treated, showing three possible means of controlling the electron spin: detuned cir-

cularly polarized optical pulses, spin precession about the externally applied DC

magnetic field and geometric phases generated by cyclic evolutions in the QD sys-

tem. Each method of spin control is expressed in terms of a unitary transformation

matrix that is used to show the possible single qubit gates that may be formed by

the use of individual or combined spin control mechanisms. Combining the operation

of the optical pulses with the magnetic field enables the construction of arbitrary

unitary single-qubit operations that may be used with two-qubit gates to operate on

an arbitrary number of qubits [39].

Chapter 6 discusses the results of experiments demonstrating the execution of the

single qubit gates discussed in Chapter 5. The method of spin initialization by optical

pumping [126–129] is first presented, followed by a discussion of the “optical tripwire”

read-out method used to observe the various spin control mechanisms. This method

of read-out is first applied to one-pulse studies to show the optical control of the

electron spin on picosecond timescales via two-photon Raman excitations. Two-pulse

studies are then performed to observe spin precession, showing arbitrary rotation of

the electron spin about the magnetic field axis. Rotations about the magnetic field

axis are also achieved by the use of the geometric phases generated by CW-driven

Rabi oscillations in one of the optical transitions in the dot, with each complete

oscillation resulting in a ¼ rotation of the spin for a resonant CW field.

Chapter 7 contains proposals for two future experiments in the charged QD sys-

tem. The first proposed experiment is the density matrix tomography (DMT) [139] of

a QD confined spin, a procedure by which the density matrix elements for the electron

spin system are determined. The suggested DMT procedure uses a combination of

spin precession and an optical pulse to determine these density matrix elements and

is important for the evaluation of spin qubit gate fidelities. The second experiment

investigates the use of optical pulses rather than a CW field to generate the geometric

phases used for spin rotation, as proposed in Reference [133]. Spin rotation via these
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pulse-generated geometric phases could be combined with two-photon control of the

spin to execute purely optical spin qubit gates. Both proposed experiments would

require the development of techniques necessary for quantum computing at the single

qubit level and are thus inevitable steps towards the realization of a working quantum

computer with QD confined spins.

A summary of the work presented in this thesis is given in Chapter 8.

1.5 Chapter Summary

A brief history of the field of quantum computation was given, discussing some

of the theoretical demonstrations that served to ignite interest in the field. The fun-

damental physical requirements for a working quantum computer, the DiVincenzo

criteria, were then presented. A number of candidate physical systems for the imple-

mentation of a quantum computer were then presented, with advantages and disad-

vantages discussed in the context of these criteria. Finally, an outline of the thesis

was given, summarizing the topics discussed in each Chapter.



CHAPTER 2

Self-Assembled InAs Quantum Dots: Characteristics and Sample

Structure

Self-assembled quantum dots (QDs) are grown either by molecular beam epi-

taxy or by metalorganic vapor phase epitaxy where growth proceeds in the so-called

Stranski-Krastanow mode due to the strain induced by the lattice mismatch between

the substrate and the deposited material. During the course of layer-by-layer growth,

the deposited material begins to coalesce to form strained “islands” once a criti-

cal thickness has been reached, this threshold determined by the materials involved

and the growth conditions [Figure 2.1(a)]. Such growth has been demonstrated for

film/substrate combinations using III-V semiconductor compounds [92,138,140–144],

II-VI semiconductor compounds [145–150] and Ge with Si [151–153]. Due to their

strong spatial confinement to dimensions on the order of 10−8 m and their ability to

be organized in 2D and 3D lattices during growth [150,154,155], SAQDs are consid-

ered highly appealing for a number of device applications. Among these applications

are low-threshold QD lasers [142,156–160], infrared detectors [159,161–167], quantum

repeaters [168–170], single photon sources [171–175], light-emitting diodes [175–178]

and, as discussed here, quantum computers [18,19,105,179,180].

Self-assembled InAs QDs grown on a GaAs substrate, the type studied in this

thesis, are arguably the most thoroughly characterized type of self-assembled dot.

This Chapter discusses some of the basic properties of the InAs QD sample used,

namely, growth, structure, carrier properties and optical selection rules.

15
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Figure 2.1: (a) Basic depiction of the QD growth process including the indium flush technique

for InAs grown on GaAs (from bottom to top). (b) R060913G sample structure diagram showing

the configuration of layers and the contacts used for voltage control. (c) Al shadow mask aperture

pattern. The smaller apertures are on the order of 1 ¹m in diameter while the larger braille features

and slots have dimensions on the order of 10 ¹m. Due to the sample mount, only those apertures

lying within the blue circle allow for studies in a transmission geometry. (d) Illustration of the

charging effect. The sample voltage determines the energy level difference between QD levels and

the Fermi energy of the electron reservoir in the n-doped GaAs layer, allowing for different possible

charge states in the dot.
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2.1 Sample Structure and Growth Process

Experiments in this thesis are performed on a single self-assembled InAs dot con-

tained within a single-layer QD heterostructure sample named “R060913G” with the

structure shown in Figure 2.1. Growth begins with the deposition of a 500 nm thick

layer of Te-doped GaAs on top of the Si-doped GaAs wafer that serves as the sam-

ple substrate and back contact. This layer is grown both to provide potential donor

electrons to the QDs through Te dopants and to ensure a high-quality surface for the

deposition of subsequent layers. A 20 nm spacer layer of undoped GaAs is then grown

atop the Te-doped layer. This layer is speculated to play a role in mitigating the ef-

fects of Te diffusion during growth, a phenomenon that has been observed in epitaxy

with Te-doped GaSb substrates and is attributed to the high diffusion coefficient of

Te [181]. Diffused Te is believed to behave as an ensemble of optically active states

whose energies cover the QD transition energy range, thus generally interfering with

single dot studies [182]. Of the various InAs QD samples studied in our laboratory,

those with thinner spacer layers of ∼ 20 nm in thickness show greater suppression

of the effects of Te diffusion than thicker spacer layers of ∼ 80 nm in thickness, the

reasons for which are not well understood at present.

After the deposition of the spacer layer, InAs is then grown layer-by-layer and

is highly strained due to the ∼ 7% lattice mismatch between InAs and GaAs. The

strained InAs deposition results initially in the formation of a 2D wetting layer (WL).

Once the WL reaches a critical thickness of 1-2 monolayers (ML), the Stranski-

Krastanow transition occurs and the layer-by-layer growth mode switches to a 3D

islanding growth mode where coherently strained QDs are formed. Continued de-

position of InAs beyond 2-3 ML leads to the introduction of dislocations in the is-

lands that relax the strain and degrade the electrical and optical properties of the

dots [92, 138]. As a result, deposition of InAs is typically terminated shortly after

entering the Stranski-Krastanow growth mode to maintain the coherently strained

QDs.

After the formation of dots an indium flush technique [183, 184] is applied to

truncate the QD heights [Figure 2.1(a)], thereby blue shifting their transition wave-
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lengths from around 1 ¹m to the 920 nm - 980 nm range. This is done to make the

QD transition energies accessible to the Ti:Sapph lasers used in our laboratory. In

this process, a partial overgrowth layer of GaAs is grown on top of the QD layer,

leaving part of the InAs exposed. The strain induced by the overgrowth layer leads

to the redistribution of InAs from the exposed portion of the dots to the top of the

overgrown GaAs, forming part of an additional WL-like layer. The substrate is heated

to eliminate this additional layer and then cooled, after which the rest of the barrier

layer is grown. An 40 nm Al0.3Ga0.7As tunnel barrier is then grown to prevent carrier

leakage to the top Schottky contact, followed by thin layers of GaAs (10 nm) and Ti

(5 nm). Finally, a 100 nm Al shadow mask is grown in which the aperture pattern

shown in Figure 2.1(c) is fabricated using electron beam lithography. This pattern

contains ordered circular and rectangular apertures that range in size from ∼ 1 ¹m

to tens of ¹m to generally allow for both single-dot and ensemble studies, though in

the case of R060913G the low dot density (∼ 1/¹m2) favors single-dot studies.

2.2 QD Charging and Carrier Properties

The structure of R060913G enables selective control of the number of carriers in

a given QD via an external voltage applied across the electrodes extending from the

Al shadow mask and the back contact [185]. The external voltage effectively tunes

the QD energy levels relative to the Fermi energy of the electron gas in the n-doped

GaAs substrate and controls the tunneling of electrons to and from the dot. The

InAs structures that have been studied in our laboratory generally allow the QD to

contain anywhere from one unit of positive charge to two units of negative charge

depending on the voltage, though in the case of R060913G only neutral dots and dots

containing a single electron have been experimentally observed (as will be shown in

Chapter 4).

Figure 2.2 shows simplified depictions of the conduction and valence bands for

neutral and negatively charged QDs and their lowest-lying optical excitations. In

general, optical excitation of a single QD leads to the generation of an electron hole
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pair, resulting in a neutral exciton in the case of an initially neutral dot and a neg-

atively charged exciton, i.e. trion, in the case of a dot initially containing a single

electron. As the goal in this work is to demonstrate quantum operations on a qubit

defined by the spin states of a QD confined electron, we now focus on the properties

of the negatively charged QD and the lowest lying optical excitations.

CB

VB

heavy-hole

CB

VB

CB

VB

CB

VB

electron

exciton trion

Neutral Dot Negatively Charged Dot

Figure 2.2: Conduction and valence band configurations before and after optical excitation for an

initially neutral dot and a dot initially containing a single electron in the conduction band. We

consider specifically the lowest-lying excitations. In the case of the negatively charged dot, the

electron pair in the conduction band forms a singlet state.

2.3 Energy Level Structure of a Negatively Charged QD

Optical control of the spin of an electron confined in a QD requires a thorough

knowledge of the selection rules between the electron spin states and the lowest-lying

trion states. Such knowledge necessitates an understanding of the QD band structure

that goes beyond the simple depiction of Figure 2.2. Basic theoretical considerations

of band structure in direct bandgap bulk semiconductors such as GaAs and InAs based

on the tight binding method (TBM) show that the bottom of the conduction band

is “s-like” (angular momentum l ∼= 0) while the top of the valence band is “p-like”

(l ∼= 1) [186]. Although this description of the conduction and valence bands in terms

of atomic orbitals breaks down for nonzero wavenumbers k, it provides an adequate

description of optical processes in these semiconductors for excitation energies near

the direct bandgap energy, due to the fact that the k values of the electrons and holes

involved in these excitations are nearly zero. This reasoning also applies to single
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QDs, where the reduced number of sites in the QD crystal lattice (compared to the

bulk case) leads to an ever greater restriction on the number of k values near k = 0

that may be involved in near-bandgap excitations. Thus, despite the lack of spherical

symmetry in the QD system, we take the conservation of angular momentum to be

quasi -satisfied and express the states of the dot in terms of atom-like orbitals.

In additional to orbital angular momentum, the spin angular momentum of car-

riers in the conduction and valence bands must also be taken into account. Inclusion

of spin in TBM calculations yields the heavy-hole (HH), light-hole (LH) and split-off

(SO) states of the valence band. For total angular momentum j = l+s and projection

mj, the HH and LH refer to the ±3/2 and ±1/2 projections, respectively, for j = 3/2

and are degenerate at the top of the valence band while the SO refers to the ±1/2

projections for j = 1/2 and is separated by the spin-orbit interaction energy. It is

well known that strain in these systems can break the HH-LH degeneracy, with tensile

strain in the growth plane leading to a higher LH and compressive strain leading to

a higher HH [186]. For strained InAs dots, the in-plane strain is compressive, leading

to a higher HH as well as mixing between the HH and the LH [187–190]. We note

that HH-LH mixing effectively rotates the polarization axis of the QD selection rules

with respect to the laboratory frame but does not qualitatively change the relative

polarizations of the different optical transitions [191]. Thus, for the purpose of deter-

mining the selection rules it is sufficient to ignore the mixing and take the HH to be

the top-most state of the valence band.

To determine the selection rules for a QD containing a single electron, one must

generally calculate the matrix elements of the position operator r̂, i.e. ⟨m∣r̂∣n⟩ where
⟨m∣ and ∣n⟩ are QD states, as the form of the optical coupling between QD levels—in

the dipole approximation—is determined by the dipole interaction V = −¹⋅E = er⋅E
where E is the electric field. We seek these matrix elements for the situation depicted

in Figure 2.3(a) with optical excitation along ẑ, the sample growth axis. The levels

of interest are the four shown in Figure 2.3(b) where the ground states are the spin

states of the confined electron and the excited states are the trion states for different

heavy-hole spin projections (with the conduction band electrons in a singlet state).
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Figure 2.3: (a) QD excitation scheme and axis orientation. Optical excitation is along the growth

axis ẑ. (b) The four levels formed by the electron spin ground states and the two heavy-hole spin

states of the trion, quantized along some axis that depends on system parameters. The dashed

green lines indicate the transitions of interest. ↑ (↓) indicates the projection of the total angular

momentum mj of the electron, corresponding to a value of 1/2(−1/2) while ⇑ (⇓) corresponds to a

heavy-hole mj value of 3/2(−3/2)

Although the confinement provided by self-assembled QDs allows for a number of

additional excited states in the dot, these states are separated in energy by tens of

mV [192] and can thus be ignored. Matrix elements for the position operator are

calculated between the transitions indicated by the dashed green arrows. As the

axis of spin quantization depends on external parameters, viz. magnetic field, we

specifically consider two cases: 1) an external DC magnetic field Bext = 0 and 2)

Bext = Bx̂ (Voigt geometry).

2.3.1 Selection Rules for Bext = 0

In the absence of an externally applied magnetic field, stationary states for the

four levels can be expressed in any basis. However, since we are interested in the

interaction of light with the QD, it is most convenient to take the optical axis as the

quantization axis for the determination of selection rules. The first step, then, is to

express the QD states in terms of the quantum numbers l, s, j, and mj, noting that

only these quantum numbers determine the axis of polarization for a given optical

transition. Expressions in terms of these quantum numbers are given in Table 2.1,
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∣level⟩ ∣CB∣VB⟩ ∣lsjmj⟩
∣A⟩ → ∣z+⟩ (∣1⟩) ∣↑ ∣−⟩ ∣01

2
1
2
1
2
⟩

∣B⟩ → ∣z−⟩ (∣2⟩) ∣↓ ∣−⟩ ∣01
2
1
2
−1
2
⟩

∣C⟩ → ∣Tz−⟩ (∣3⟩) ∣↓↑ ∣ ⇓⟩ ∣11
2
3
2
−3
2
⟩

∣D⟩ → ∣Tz+⟩ (∣4⟩) ∣↓↑ ∣ ⇑⟩ ∣11
2
3
2
3
2
⟩

Table 2.1: Energy level labels and expressions in terms of spin and angular quantum numbers for

Bext = 0. The notation ∣□⟩ indicates a ẑ basis state and is used to distinguish from x̂ basis states.

which also shows how the states have been relabeled to reflect the ẑ-axis quantization.

We then express the position vector r in irreducible tensor form, i.e.

r = −rC1
−1²̂+1 + rC1

0 ²̂0 − rC1
+1²̂−1 (2.1)

where ²̂±1 = ∓¾̂± = ∓1
2
(x̂± iŷ), ²̂0 = ẑ and C l

m are the Racah tensors

C l
m =

(
4¼

2l + 1

) 1
2

Y l
m (2.2)

for spherical harmonics Y l
m. Since we are only concerned with the polarization axes

of the transitions, we need only consider the matrix elements for the operator corre-

sponding to the quantity r/r. The details of this calculation are given in Appendix A,

the results of which are displayed in Figure 2.4(a). We see that without an exter-

nal field the four levels form two degenerate two-level systems with circularly cross-

polarized selection rules. As the transitions indicated by the dashed red arrows are

optically forbidden (Δj = ±2) these two two-level systems are optically independent.

2.3.2 Selection Rules for Bext = Bx̂

A magnetic field applied along x̂ serves to quantize the spins of the QD states

along the magnetic field axis and lift the Kramers’ degeneracy for the spin states of

both the ground state electron and the heavy-hole of the trion, leading to Zeeman

splittings between the originally degenerate states. To determine the selection rules

in this case, the new basis states must first be expressed in terms of the ẑ basis states
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∣level⟩ ẑ basis expr.

∣A⟩ → ∣x+⟩ (∣1⟩) 1√
2
[∣z−⟩+ ∣z+⟩]

∣B⟩ → ∣x−⟩ (∣2⟩) 1√
2
[∣z−⟩ − ∣z+⟩]

∣C⟩ → ∣Tx−⟩ (∣3⟩) 1√
2
[∣Tz−⟩ − ∣Tz+⟩]

∣D⟩ → ∣Tx+⟩ (∣4⟩) 1√
2
[∣Tz−⟩+ ∣Tz+⟩]

Table 2.2: Energy level labels and expressions in terms of ẑ basis states for Bext = Bx̂. The

notation ∣□⟩ (no overline) indicates an x̂ basis state.

before the matrix elements of r/r can be calculated. The transformation relations

between the basis states can be determined by diagonalizing the Hamiltonian, the

details of which are handled in the Appendix B. The transformation relations are

summarized in Table 2.2.

Figure 2.4(b) shows the configuration of energy levels and selection rules for the

case of a magnetic field applied in the Voigt profile. In addition to lifting the Kramers’

degeneracy, the magnetic field also enables the optical coupling of each electron spin

ground state to both trion states by linearly polarized selection rules. These selection

rules determine the polarization required to optically control the electron spin and,

in conjunction with the electron and heavy-hole Zeeman splittings, play a crucial role

in determining the axes about which the spin vector may be optically rotated. The

consequences of these selection rules are discussed in more detail in Chapter 5.

2.4 Chapter Summary

An overview of the general properties and applications of self-assembled QDs was

given. The structure and growth of the sample used for single-dot studies in this

thesis work were then discussed. QD band structure was then discussed for different

charge states, with an emphasis on the band structure structure of a dot containing

a single electron in the conduction band. Selection rules between the ground states

of a negatively charged dot and the lowest lying trion states were then derived with

and without an external DC magnetic field applied in the Voigt geometry. The
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Figure 2.4: Diagrams illustrating the arrangement of levels and transition selection rules for (a)

Bext = 0 and (b) Bext = Bx̂. The dashed red arrows indicate optically forbidden transitions.

Δe(Δℎ) are the electron and heavy-hole Zeeman splittings. The state labels used for mathematical

expressions in this thesis are given by the light blue text.

classification of these selection rules is crucial to the understanding of how optical

fields may be used to prepare, manipulate and read-out the electron spin, as will be

seen in the following Chapters.



CHAPTER 3

Control and Read-Out of a Single InAs QD with Picosecond Optical

Pulses: Theory

QDs containing a single spin have received much attention over the last sev-

eral years due to demonstrations of their viability for use in quantum computing

schemes [18, 19, 104, 106]. A substantial reason for this is the observation of both a

long spin lifetime [109, 110, 115] and a long spin coherence time [112, 116, 119, 120]

in these systems, an important requirement for quantum computing. A common ap-

proach to obtaining values for the spin lifetime and the spin coherence time in QDs is

by performing time-resolved studies of a single QD spin, though there have been cases

where these values have been extracted from ensemble studies [116]. The majority

of these time-resolved single QD spin studies have been performed either with elec-

trostatically defined QDs in a 2D electron gas [101,102] or with interface fluctuation

QDs defined by monolayer fluctuations at the junction of GaAs and AlGaAs quantum

wells [119, 193] rather than with self-assembled QDs. This is due mostly to the diffi-

culty of time-resolved studies of a single self-assembled QD spin, which often require

optical read-out techniques that are hampered by the small optical dipole moments

of self-assembled QDs [194]. As a result, most transient optical studies of a spin

confined in a single self-assembled QD have measured the PL from a single dot [131]

or the photocurrent of a dot embedded in a photodiode structure [195, 196]. Both

of these methods rely upon the relaxation of QD states for measurement, whether it

is the decay of excited states for PL measurements or the tunneling of carriers for

photocurrent measurements.

25
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The ability to coherently probe a single self-assembled QD with an optical pulse

would provide a means of performing time-resolved studies of a single QD spin that

does not rely upon state relaxation, potentially enabling spin lifetime and coherence

time measurements as well as the characterization of spin qubit gate operations [139].

In this Chapter, we discuss the theoretical foundations for time-resolved optical stud-

ies of a single spin confined in an InAs QD using the density matrix formalism. We

first discuss how an optical pulse may be used to probe an optical transition in a sin-

gle self-assembled QD and then show how this can be applied to pump-probe studies

to investigate transient QD phenomena such as trion decay and spin precession. We

consider studies both with and without an external magnetic field applied in the Voigt

geometry, with analytical expressions provided for the measured signals in each case.

3.1 Pulse-Driven Two-Level System

To illustrate how pulsed optical read-out of a single InAs QD is achieved, we first

examine the pulsed optical excitation of the two-level system shown in Figure 3.1

that represents one of the optical transitions in the QD. For the optical excitation we

specifically consider a hyperbolic secant pulse of the form

E(r, t) =
1

2
E(r)sech

(
t

¿

)[
¾̂+e

i(k⋅r−Ωt) + c.c.
]

(3.1)

where ¾± = x̂± iŷ and for the time being we leave the spatial profile and propagation

direction unspecified. To determine the behavior of the system under such excitation,

we utilize the formalism of the density matrix [197]. This is done by first expressing

the wavefunction for our two-level system in the standard amplitude picture,

∣Ψ(t)⟩ = c1(t)∣1⟩+ c2(t)∣2⟩ (3.2)

∣c1(t)∣2 + ∣c2(t)∣2 = 1 (3.3)

where ci is the probability amplitude of state ∣i⟩. The density matrix is then defined

as

½(t) =

⎡
⎣ c1(t)c

∗
1(t) c1(t)c

∗
2(t)

c2(t)c
∗
1(t) c2(t)c

∗
2(t)

⎤
⎦ =

⎡
⎣ ½11(t) ½12(t)

½21(t) ½22(t)

⎤
⎦ (3.4)
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Figure 3.1: Two-level system representing one of the optical transitions in a QD. !0 is the angular

frequency corresponding to the energy difference between the states, Γ is the excited state decay

rate, Ω is the laser frequency, which is set equal to !0, and ¾̂+ indicates the optical polarization that

drives the transition.

where the diagonal and off-diagonal terms are often referred to as “populations”

and “coherences,” respectively. This formalism enables the generation of the system

equations of motion, or the density matrix equations (DME), using the expression

½̇ij =
1

iℏ
[H, ½]ij − decayij (3.5)

where H is the Hamiltonian for the two-level system and “decay” indicates terms ac-

counting for the decay of density matrix elements, e.g. terms containing the coherence

decay rate ° or the excited state relaxation rate Γ.

The Hamiltonian for the two level system has the form H = H0 + V where H0 is

the Hamiltonian in the absence of any optical driving fields and V = −¹ ⋅ E is the

dipole interaction potential for a transition dipole ¹. To determine the matrix form

of H, we must determine the matrix forms of H0 and V . The matrix representation

of H0 is simply a diagonal matrix consisting of the energy eigenvalues. The matrix

form of V can be determined by evaluating the quantities

⟨i∣V ∣j⟩ = 1

2
sech

(
t

¿

)
⟨i∣E(r)¹ ⋅ [¾̂+e

i(k⋅r−Ωt) + c.c.]∣j⟩ (3.6)

for each combination of i and j. To enable the determination of these quantities, we

take states ∣1⟩ and ∣2⟩ to represent, say, the ∣z+⟩ and ∣Tz+⟩ states of the dot and utilize

the fact that the spatial extent of the QD levels (∼10 nm) [198] is much smaller than

both the wavelength of the optical field (∼ 1 ¹m) and typical beam profile dimensions

(∼ 10 ¹m). Thus, we make the substitutions E(r) → E and eik⋅r → 1 (dot at the
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origin in the lab frame) and then calculate the V matrix elements using the matrix

elements of ¹ (Appendix A). The total Hamiltonian can then be written as

H = ℏ

⎡
⎣ 0 R12

R21 !0

⎤
⎦ (3.7)

where

R12 = R∗
21 = −Âsech

(
t

¿

)
eiΩt, Â =

¹E

2ℏ
. (3.8)

Use of Equations 3.5 and 3.7 leads to the DME

½̇11 = −iÂsech

(
t

¿

)[
e−iΩt½12 − eiΩt½21

]
+ Γ½22 (3.9)

½̇22 = iÂsech

(
t

¿

)[
e−iΩt½12 − eiΩt½21

]− Γ½11 (3.10)

½̇12 = −(Γ/2− i!0)½12 + iÂsech

(
t

¿

)
eiΩt [½22 − ½11] (3.11)

½̇21 = −(Γ/2 + i!0)½12 − iÂsech

(
t

¿

)
e−iΩt [½22 − ½11] (3.12)

where we have assumed the absence of any pure dephasing mechanisms so that ° =

Γ/2. To simplify the solving of these DME, we take ¿ << 1/°, i.e. a pulse width

much shorter than the excited state dephasing time. For pulse widths of ∼ 2 ps, this

is certainly the case in self-assembled QDs where excited state lifetimes have been

measured to be on the order of 1 ns [128,199]. In addition, we for now consider system

dynamics only on time scales much shorter than the excited state relaxation time.

This allows us to ignore the decay terms in the DME to obtain analytic expressions

for the density matrix elements.

To solve the DME with these simplifications, we move into the field interaction

picture (FIP) using the transformations

½12 = eiΩt½̃12, ½21 = e−iΩt½̃21 (3.13)

and make the rotating wave approximation (RWA) (e±2iΩt ∼ 0), thereby eliminating

the e±iΩt terms from the FIP DME. Analytic expressions for the solutions obtained
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in the FIP are then transformed back into the standard Schrödinger picture, yielding

½11(t) =
1

2

[
½tot − i

(
½
[0]
12 − ½

[0]
21

)
sin[µ(t)]−

(
½
[0]
22 − ½

[0]
11

)
cos[µ(t)]

]
(3.14)

½22(t) =
1

2

[
½tot + i

(
½
[0]
12 − ½

[0]
21

)
sin[µ(t)] +

(
½
[0]
22 − ½

[0]
11

)
cos[µ(t)]

]
(3.15)

½12(t) =
eiΩt

2

[(
½
[0]
12 + ½

[0]
21

)
+
(
½
[0]
12 − ½

[0]
21

)
cos[µ(t)] + i

(
½
[0]
22 − ½

[0]
11

)
sin[µ(t)]

]
(3.16)

½21(t) =
e−iΩt

2

[(
½
[0]
12 + ½

[0]
21

)
−

(
½
[0]
12 − ½

[0]
21

)
cos[µ(t)]− i

(
½
[0]
22 − ½

[0]
11

)
sin[µ(t)]

]
(3.17)

where ½
[0]
ij = ½ij(−∞) is the initial value of the density matrix element prior to

excitation, ½tot is the total population in the two level system at any given time and

µ(t) =
1

ℏ

∫ t

−∞
dt′¹ ⋅ E(t′) = ¼Â¿ + 4Â¿ tan−1

[
tanh

(
t

2¿

)]
(3.18)

is the time-dependent pulse area. With the solutions to the DME determined we

now consider the form of the electric field Es radiated by the dot as a result of the

optically induced polarization in the QD

P = ¹12½21 + ¹21½12. (3.19)

To obtain the form of Es we need to treat the optically induced polarization as a

source term in Maxwell’s Equations, leading to the Maxwell-Bloch equations. Solu-

tions to the Maxwell-Bloch equations express Es in terms of density matrix elements,

demonstrating that experimental measurements of the electric field radiated by a sin-

gle QD provide a means of performing time-resolved studies of the quantum states of

the QD.

3.2 Maxwell-Bloch Equations

With the solutions to the DME for the two-level system already in hand, we

consider Maxwell’s equations in the absence of any free charges (½ = 0) or currents

(J = 0) [200]:

∇ ⋅D = 0 ∇×H =
∂D

∂t

∇ ⋅B = 0 ∇× Es +
∂B

∂t
= 0

(3.20)
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with

H = (1/¹M)B, D = ²Es +P

where ² and ¹M are the electric permittivity and magnetic permeability, respectively.

These equations can be used to form the wave equation

∇(∇ ⋅ Es)−∇2Es + ¹M²
∂2Es

∂t2
= −¹M

∂2P

∂t2
(3.21)

which can be solved by applying a series of approximations. First, we take P to

have the form of a wave propagating along ẑ and ignore any spatial variation of P

in the plane transverse to the propagation direction. This approximation effectively

disregards “transverse” effects such as self-focusing [201] and allows us to set∇⋅P ∼ 0.

Along with the Gauss’ Law (Equation 3.20), this leads to

∇ ⋅ Es =
1

²
(∇ ⋅D−∇ ⋅P) = 0

where Equation 3.21 can now be written as

∂2E

∂z2
− ¹M²

∂2Es

∂t2
= −¹M

∂2P

∂t2
. (3.22)

To solve Equation 3.22 we invoke the phase matching condition and write P and

Es as

P =
1

2

(
P̃+ P̃∗

)
(3.23)

Es =
1

2

(
Ẽs + Ẽ∗

s

)
(3.24)

where
⎧
⎨
⎩

P̃

Ẽs

⎫
⎬
⎭ =

⎧
⎨
⎩

P (z, t)

Es(z, t)

⎫
⎬
⎭ ²̂ei(kzz−!t). (3.25)

From the linearity of Equation 3.22 and the orthogonality of the time oscillating com-

ponents of P and Es, it suffices to solve for P̃ and Ẽs, as the conjugate terms are

obtained in the same fashion. To do this, we make the slowly-varying envelope ap-

proximation (SVEA), which applies to pulses whose optical periods are much shorter
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than the pulse width in time and whose optical wavelengths are much shorter than

the spatial profile full width at half maximum (FWHM), as is the case with the pulses

considered here. This permits the elimination of second order and higher derivatives

in space and first and higher order derivatives in time, leading to the expression

²̂ei(kzz−!t)

[(
2ikz

∂

∂z
− k2

z + ¹M²!2

)
Es(z, t) + ¹!2P (z, t)

]
= 0

which can be further simplified by recognizing that k2
z = ¹M²!2. Considering only

the expression in the brackets leaves us with the relation

∂

∂z
Es(z, t) =

ikz
2²

P (z, t). (3.26)

As the spatial extent of the QD along the optical axis is much shorter than the

optical wavelength, the z derivative can be replaced in terms of a length a reflecting

the sample thickness, leading to the expression

Es(z, t) =
iakz
2²

P (z, t). (3.27)

Multiplication of both sides by ²̂ei(kzz−!t) and use of Equation 3.19 yields the Maxwell-

Bloch equations

Ẽs =
iakz
²

¹12½21 (3.28)

Ẽ∗
s = −iakz

²
¹21½12 (3.29)

where we have elected to express Ẽs(Ẽ
∗
s) in terms of ½21(½12) (Equations 3.16 and

3.17) in order to preserve the association of the □̃(□̃∗) terms with negative (positive)

frequencies (Equation 3.25). The total electric field Es can now be expressed as

Es =
iakz
²

(¹12½21 − ¹21½12) = −2akz
²

Im[¹12½21] (3.30)

and serves as the crux of pulsed optical measurements of single InAs QDs.

It must be noted that the plane wave approximation (i.e. ∇⋅P ∼ 0) applied in the

derivation of the Maxwell-Bloch equations above is generally insufficient to accurately

describe the form of the total radiated field Es. In reality, determination of the

mathematical form of Es becomes non-trivial when taking into account the shape of
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the dot and is even further complicated by the presence of the nearby apertures on the

aluminum shadow mask. Nevertheless, the plane wave description of the QD radiated

field at the surface of a photodetector in the far field is an acceptable approximation

that enables determination of QD physics. As such, the Maxwell-Bloch equations, as

expressed in Equations 3.28 and 3.29, are useful for describing the mathematical form

of experimentally measured signals. In the following section, we use these Maxwell-

Bloch equations to discuss the theory of the phase-sensitive detection technique that

is used to effectively probe the time-dependent density matrix elements of the QD.

3.3 Phase-Sensitive Detection of QD States

To obtain measurements of the QD density matrix elements, we perform homo-

dyne measurements of the interference between the radiated field Es and the exci-

tation field E using a square-law detector that effectively integrates the square of

the vector sum of the fields in time over its optically active surface. The detector is

oriented in the x̂-ŷ plane at a particular point along the ẑ axis (in the far field) and is

taken to possess an active area much larger than the spatial profile of the excitation

pulse. The spatial dependence of the vector sum is then integrated out, allowing us

to focus on the integral in time, which yields the photocurrent signal

Isig = K

∫ ∞

∞
dt (E+ Es)

2 (3.31)

where K is a proportionality constant reflecting the photosensitivity of the detector.

To calculate this integral, we reexpress the excitation field as

E =
1

2

[
E¾̂+sech

(
t

¿

)
e−iΩt + E¾̂−sech

(
t

¿

)
eiΩt

]
=

1

2

(
Ẽ+ Ẽ∗

)
(3.32)

and expand the square of the vector sum as

(Es + E)2 = E2
s + E2 + 2 (Es ⋅ E) (3.33)

(Es + E)2 = E2
s + E2 +

1

2

(
Ẽs ⋅ Ẽ+ Ẽs ⋅ Ẽ∗ + Ẽ∗

s ⋅ Ẽ+ Ẽ∗
s ⋅ Ẽ∗

)
. (3.34)

Equation 3.34 can be immediately simplified by recognizing that the terms Ẽs ⋅ Ẽ and

Ẽ∗
s ⋅ Ẽ∗ oscillate at twice the optical frequency and thus average out to zero on the
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square-law detector. Further, we consider the specific case where the radiated field Es

is modulated at some frequency !ref, enabling the use of a lock-in amplifier attached

to the detector output to detect only those components of the photocurrent signal

Isig that are modulated at !ref. In this case, only the second and third parenthesized

terms in Equation 3.34 contribute to the lock-in detected photocurrent, i.e.

ILIsig =
1

2
K

∫ ∞

−∞
dt

(
Ẽs ⋅ Ẽ∗ + Ẽ∗

s ⋅ Ẽ
)
. (3.35)

Using the Maxwell-Bloch equations along with Equations 3.13 and 3.32 gives us

ILIsig =
1

²
Kakz¹E

∫ ∞

−∞
dt sech

(
t

¿

)
Im [½̃12(t)] (3.36)

which, using Equation 3.16, becomes

ILIsig =
1

²
Kakz¹E×

{
Im

[
½
[0]
12

] ∫ ∞

−∞
dt sech

(
t

¿

)
cos[µ(t)] + (½

[0]
22 − ½

[0]
11)

∫ ∞

−∞
dt sech

(
t

¿

)
sin[µ(t)]

}
.

(3.37)

Evaluation of the integrals in Equation 3.37 yields the final expression

ILIsig = 2

√
¹M

²
Ka(ℏ!0)

{
1

2
Im

[
½
[0]
12

]
sin[µ(∞)] + (½

[0]
22 − ½

[0]
11) sin

2[µ(∞)/2]

}
(3.38)

where µ(∞) = 2¼Â¿ (from Equation 3.18). Equation 3.38 gives the important result

that the lock-in detected interference between the transmitted pulse and the QD

radiated field depends on both the density matrix elements of the driven transition

prior to excitation and the pulse area. Further, selection of the proper excitation pulse

area allows for the isolation of either the coherence (½
[0]
12) or the population difference

(½
[0]
22 − ½

[0]
11) immediately before the arrival of the pulse. Application of this read-out

technique to pump-probe studies enables measurement of pump-induced changes in

the QD states via the probe. We now consider the experimentally determined signals

for studies with and without an external DC magnetic field, highlighting theoretically

observable phenomena such as trion decay, Rabi oscillations between the electron and

trion states, and electron and heavy-hole spin precession.
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3.4 Pump-Probe Studies: Bext = 0

Resonant pump-probe studies in the absence of any externally applied magnetic

fields enable observation of trion excitation and decay as well as pump-driven Rabi

oscillations between the electron and trion states. To see this, we consider the case

where both the pump and probe pulses are ¾̂+ polarized and thus only excite the

∣z+⟩ to ∣Tz+⟩ transition. We treat the problem by first obtaining solutions for the

case of pump excitation in the absence of decay and then using these solutions to

provide the initial conditions for the freely-evolving system. The solutions for the

freely-evolving case are then used as the “initial conditions” for the subsequent probe

pulse, i.e. for pump incidence at time t = 0 and a time delay td between the pulses,

the free-evolution solutions at t = td are taken as the ½
[0]
ij values (½ij = ∣i⟩⟨j∣) for the

lock-in detected signal ILIsig of Equation 3.38.

The solutions for pump excitation can be obtained in the same manner as in

Section 3.1 with ∣z+⟩ and ∣Tz+⟩ serving as states ∣1⟩ and ∣2⟩, respectively. Here,

however, solutions in the FIP are then taken in the limit of t → ∞ and used as the

initial conditions for the free-evolution of the system between pulses. Between pulses,

system dynamics are driven by decay and decoherence and thus solutions must in

general account for all decay mechanisms, as illustrated in Figure 3.2. The problem

can be significantly simplified by utilizing the fact that electron and heavy-hole spin

relaxation rates Γe and Γℎ are several orders of magnitude slower than the trion

relaxation rate Γt [115, 124]. As the time delay range covered in experiments is, at

most, on the order of the trion relaxation time T t
1 = 1/Γt, the effects of spin relaxation

are minuscule. Under these conditions, the two two-level systems can be treated as

essentially decoupled, thus we only consider the optically driven transition. Assuming

the ability to completely block the pump field after the sample, the lock-in detected

signal has the form

ILIsig = 2

√
¹M

²
Ka(ℏ!0)

{
1

2
Im [½14(td)] sin[µpr] + [½44(td)− ½11(td)] sin

2[µpr/2]

}
(3.39)
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with

Im [½14(td)] = Re[½
[0]
14]Θ(td)e

−Γt
2
td sin(!0td)

+

{
Im[½

[0]
14] cos[µpu] +

1

2
(½

[0]
44 − ½

[0]
11) sin[µpu]

}
Θ(td)e

−Γt
2
td cos(!0td)

(3.40)

and

½44(td)− ½11(td) =

Θ(td)e
−Γttd

{
½tot

(
1− eΓttd

Θ(td)

)
− 2Im[½

[0]
14] sin[µpu] + (½

[0]
44 − ½

[0]
11) cos[µpu]

}

(3.41)

where Θ is the Heaviside step function, µpu(pr) is the pump (probe) pulse area and we

have used the state labeling scheme of Table 2.1. We will in general be considering

the case where the QD is in the ground state prior to excitation with the electron

spin population equally distributed between the two spin states. The signal then has

the form

ILIsig = 2

√
¹M

²
Ka(ℏ!0)×

{
sin2[µpr/2]

[
sin2[µpu/2]Θ(td)e

−Γttd − 1

2

]
− 1

8
sin[µpu] sin[µpr]Θ(td)e

Γt
2
td sin(!0td)

}

(3.42)

where the first term in the brackets reflects the evolution of the population while the

second term reflects the evolution of the coherence.

For a fixed pulse area, the first term in the curly brackets of Equation 3.42 de-

cays exponentially with pulse delay as a result of the decay of pump-generated trion

population while for a fixed pulse delay it oscillates as a function of pulse area due to

pump-driven Rabi oscillations between ∣z+⟩ and ∣Tz+⟩. The second term in the curly

brackets also decays as a function of pulse delay (in this case due to trion dephasing)

but also oscillates at optical frequencies. Because of this high frequency dependence

on the pulse-delay, this term effectively averages out to zero for experiments where the

photocurrent signal as a function of pulse delay is averaged for several hours without

any active stabilization of the phase between the pump and probe pulse trains, as

will be discussed in more detail in the following Chapter. Thus, pump-probe studies
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Figure 3.2: Relaxation rates between the QD levels (a) with and (b) without an externally applied

magnetic field along x̂. For each case, the trion relaxation rates are assumed to be equal for each

decay path and the mutual relaxation rates between the spins are taken to be the same.

are used primarily to investigate the “population” term of Equation 3.42 and, in the

case of studies without a magnetic field, are used to observe trion decay and trion

Rabi oscillations.

3.5 Pump-Probe Studies: Bext = Bx̂

Pump-probe studies with a magnetic field applied along x̂ provide a means of

observing the precession of QD spins. In this case, stationary states are defined in

the x̂ basis and are linear combinations of the states defined in the ẑ basis. For

electron and heavy-hole spin vectors of the form

se,ℎ = x̂⟨sx⟩e,ℎ + ŷ⟨sy⟩e,ℎ + ẑ⟨sz⟩e,ℎ (3.43)

with

sx =
ℏ
2

⎡
⎣ 0 1

1 0

⎤
⎦ , sy =

ℏ
2

⎡
⎣ 0 −i

i 0

⎤
⎦ , sz =

ℏ
2

⎡
⎣ 1 0

0 −1

⎤
⎦ , (3.44)

excitation of either transition in the dot by a ¾̂± polarized pump pulse generates spin

vectors for the electron and heavy-hole that are oppositely oriented along the optical

axis ẑ. As a result of the magnetic field, these spin vectors then precess about x̂

(Figure 3.3). Equivalently, this precession represents the time-evolution of coherence
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Figure 3.3: Spin Bloch spheres in real space showing the time-evolution of the electron and heavy-

hole spin vectors for a resonant ¾̂− polarized pulse incident at time t = 0. Prior to excitation (t < 0),

the electron and heavy-hole spins are unpolarized. At t = 0 the ¾̂− polarized pulse generates ∣Tz+⟩
population, creating electron and heavy-hole spin vectors that are oppositely aligned along ẑ. These

spin vectors precess about the x̂ axis at rates determined by the Zeeman splittings for the two spins.

generated between the spin states of the electron and the heavy-hole in the x̂ basis

by the pump pulse via stimulated two-photon Raman processes [202,203]. It is these

same two-photon Raman processes that will be used to coherently control the spin of

the resident electron in Chapters 5 and 6.

Spin vectors generated by the pump pulse precess about the magnetic field at

frequencies determined by the respective Zeeman splittings of the electron and the

heavy-hole spins, which depend on the magnitude of the external magnetic field and

the electron and heavy-hole in-plane g-factors. During precession, the spin vectors

decay in magnitude due to dephasing and relaxation processes in the dot. For the

electron, the timescale for the decay of the spin vector magnitude is determined by the

spin coherence time T e∗
2 , where the asterisk indicates the inhomogenous broadening of

the coherence time due to fluctuations in the hyperfine nuclear field. For the heavy-

hole, the timescale for decay is determined by both the heavy-hole spin coherence

time T ℎ∗
2 and the trion relaxation time T t

1, as trion decay also destroys heavy-hole

spin coherence. In pump-probe studies, we then expect that in probing with either a
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¾̂+ or a ¾̂− polarized probe the lock-in detected signal will consist of two oscillating

components decaying at different rates.

To determine the mathematical form of the lock-in detected signal we consider

the case of circularly cross-polarized pump and probe pulses resonant with the ẑ

basis transitions. Excitation by the ¾̂+ pump pulse incident at t = 0 is handled the

same way as in the previous section. For the free-evolution of the system between

pulses, however, all four of the ẑ basis density matrix elements immediately after

the pump pulse are transformed to the x̂ basis using the transformations given in

Appendix B. The x̂ basis density matrix elements evolve for a time duration td and

are then transformed back into the ẑ basis. Homodyne detection of the ¾̂− probe

pulse leads to the lock-in detected photocurrent

ILIsig ≈ 2

√
¹M

²
Ka(ℏ!0) sin

2[µpr/2]×
{
1

4
sin2[µpu/2]Θ(td)

[
2e−2Γttd − e−td/T

e∗
2 cos(Δetd)− e−2Γttde−td/T

ℎ∗
2 cos(Δℎtd)

]
− 1

2

}

(3.45)

where we have already made use of the fact that the “coherence” term of the signal

averages to zero due to the high number of averages taken in experiments without

optical phase stabilization between the pump and probe beams. We see that, in-

deed, the signal possesses two decaying oscillation components in addition to a DC

component (due to the initial population difference between the electron and trion

states prior to pump excitation). Thus, lock-in detected photocurrent measurements

in principle enable the determination of the g-factors and the coherence times for the

electron and the heavy-hole.

3.6 Chapter Summary

The theoretical foundation for pulsed optical measurements of a single InAs QD

were presented. Phase sensitive detection of the interference between the excitation

pulse and the field radiated by the optically induced polarization in the dot was

established as the basis of time-resolved studies of single QDs. This method of detec-
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tion was applied to pump-probe studies of a single QD with and without an external

magnetic field, showing that phenomena such as trion decay, trion Rabi oscillations,

spin precession and spin dephasing can in principle be observed. Experimental results

employing this method of detection are presented in the following Chapter.



CHAPTER 4

Control and Read-Out of a Single InAs QD with Picosecond Optical

Pulses: Experimental Setup and Results

The ability to perform time-resolved optical studies of a single self-assembled

QD with ultrafast optical pulses would provide a powerful tool for studying tran-

sient phenomena at the single-dot level. Until recently, such studies had been elu-

sive in self-assembled QDs due to the difficulty imposed by the small optical dipole

moments of self-assembled QDs. In the homodyne measurements presented in the

previous Chapter, these small dipole moments necessitate the ability to detect the

small field radiated by the QD optical polarization on top of a large intensity back-

ground. When compared to pulsed optical studies of single interface fluctuation

QDs [107,119,130,139,204,205], the intensity backgrounds encountered in single self-

assembled QD studies are roughly two orders of magnitude larger due to the order of

magnitude difference between the dipole moments of the two types of dots [194]. As

a result, single self-assembled QD measurements with ultrafast optical pulses require

particularly low-noise experimental conditions.

In this Chapter, we present the general experimental setup and procedure em-

ployed for single self-assembled QD studies, culminating in the discussion of the

experimental results from one- and two-pulse studies of a single InAs QD. The char-

acterization process for single QDs is first presented, starting with a discussion of

the PL signal from a single quantum dot by which QD charge states are identified.

Absorption studies with a narrow-bandwidth continuous-wave (CW) optical source

are then performed to characterize the energy range in which a particular QD charge

40
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Figure 4.1: The experimental setup used in all studies, where components surrounded in dashed

boxes are on removable mounts. Optical pulses and CW fields are provided by the Coherent MIRA

900 and the Coherent 899-29, respectively, both pumped by separate Coherent Verdi-V10 solid

state lasers (not pictured). A Janis Research Company superconducting magneto cryostat keeps the

sample at liquid helium temperatures and is used to provide DC magnetic fields ranging from 0 to 6.6

T in strength. The sample is imaged using a CCD camera on the collection side of the sample. For

PL spectroscopy studies, a Horiba Jobin-Yvon HR640 spectrometer is used along with a Princeton

Instruments liquid nitrogen cooled CCD. For pulsed and CW absorption studies, measurements are

taken using a Hamamatsu S8890-15 Si avalanche photodiode module. The photocurrent output is

converted to a voltage with a 10 kΩ resistor and is then read by an EG&G 7265 lock-in amplifier.

Both the reference signal and the sample bias signal are provided by a Stanford Research Systems

DS345 signal generator.

state optically absorbs. Absorption studies with a single train of optical pulses are

then performed to demonstrate the ability to read-out a single QD with optical pulses.

These pulsed optical measurements are then implemented in two-pulse studies both

with and without an external magnetic field applied perpendicular to the growth

axis. Results from two-pulse studies are used to extract parameters such as the trion

dipole moment, the trion lifetime and the g-factors of the electron and the heavy-

hole. Two-pulse studies with a magnetic field, though in principle able to determine

the T ∗
2 values for the electron and the heavy-hole, are severely limited by the high

number of averages required to achieve sufficient measurement SNR. This limits the

range of time-delays that can be considered in experiments and thus prevents reliable
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extraction of the spin T ∗
2 values. These studies are still, however, able to provide an

estimation of the lower-bound of the spin coherence times in a single self-assembled

QD.

4.1 Experimental Setup

The experimental setup used for all experiments presented in this thesis is given

in Fig. 4.1. This is a dynamic setup that enables frequency and time-domain studies

of single QDs, as well as studies simultaneously employing both optical pulses and

narrow bandwidth optical fields. We now discuss the various components of this setup

and their properties.

4.1.1 Optical Sources

A Coherent MIRA 900 Ti:Sapph laser is used as the pulsed optical source and

can be switched between picosecond or femtosecond operation depending on whether

a GVD compensating prism pair is installed. The MIRA 900 also has the option

of operating in CW mode, though the optical output in this mode is not frequency

stabilized. In picosecond mode, the MIRA 900 provides mode-locked pulses 1-3 ps in

width (depending on the exit slit size) at a rate of 76 MHz (13.2 ns repetition period)

that can be tuned between 700 nm and 1 ¹m. With the prism pair installed the

MIRA 900 can operate in femtosecond mode, producing pulses of < 200 fs in pulse

width with the same repetition rate and tunability as in picosecond mode. For all

experiments performed in this work, the MIRA 900 is operated in picosecond mode.

Fig. 4.2 shows the autocorrelation trace and pulse spectrum of the MIRA 900 pulses

employed in experiments.

Frequency-locked narrow-bandwidth CW fields are provided by a Coherent 899-29

Ti:Sapph laser. This laser is capable of generating tunable, actively stabilized optical

output with a bandwidth of < 500 kHz. The 899-29 employed in experiments can be

tuned roughly between 900 nm and 980 nm and is used in CW absorption studies of

single QD states.
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Figure 4.2: Intensity autocorrelation trace (left) and optical spectrum (right) of the MIRA 900

pulses produced in picosecond mode for a particular exit slit width. Autocorrelation traces are taken

with an Inrad model 5-14A autocorrelator that measures the intensity autocorrelation signal. The

pulse spectrum was measured using the HR640 with the liquid nitrogen cooled CCD camera and fit

to a squared hyperbolic secant function (red curve).

4.1.2 Cryostat

In all experiments, the sample is kept at liquid helium temperatures around 5

K both to prevent thermal excitation of excited states in the dot and to reduce the

contribution of acoustic phonons to QD state relaxation and dephasing. In addition,

some studies require the sample to be placed in a large external DC magnetic field.

Both of these functions are performed by a Janis Research Company superconducting

magneto cryostat capable of maintaining liquid helium temperatures and sustaining

DC magnetic fields of up to ∼ 7 T, which can be applied along or perpendicular to

the sample growth axis. Sealed windows on the cryostat allow transmission studies

for optical excitation along two orthogonal axes. In addition, the cryostat is equipped

with interfacing ports that enable the connection of external signal generators with

the sample bias terminals.

4.1.3 PL Spectroscopy Setup

For PL spectroscopy we use a Horiba Jobin-Yvon (HJY) HR640 spectrometer
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Figure 4.3: APD circuit diagram.

possessing a 11 × 11 grating blazed at 1 ¹m with 600 grooves/mm. At wavelengths

around 950 nm the HR640 has the practical resolving power—based on the Rayleigh

criterion—to distinguish spectral lines of equal intensity with energy separations as

small as 44 ¹eV. The detector used with the HR640 is a Princeton Instruments liquid

nitrogen cooled CCD camera with a CCD chip consisting of a 256 × 1024 grid of 26

¹m×26 ¹m pixels.

4.1.4 Phase Sensitive Detection Setup

For the phase sensitive measurements discussed in the previous Chapter, we use a

setup consisting of a Hamamatsu S8890-15 Si avalanche photodiode (APD), a Stan-

ford Research Systems (SRS) PS325 high voltage power supply, a SRS DS345 signal

generator and an EG&G 7265 digital lock-in amplifier. The DS345 provides an AC

voltage signal at a particular frequency across the voltage terminals of the sample

that serves to modulate the properties of the QD under study. This modulation in

turn modulates the properties of the optical fields transmitted through the sample at

the same frequency. This transmitted light is focused onto the active area of the Si

APD, which serves to convert the transmitted field intensities to a current output.

A circuit diagram for the APD used in experiments is given in Fig. 4.3. The voltage

drop induced by the APD photocurrent across a 10 kΩ resistor is measured by the

lock-in amplifier, which isolates the component of the measured voltage modulated
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Figure 4.4: PL spectra as a function of emission wavelength for sample R060913G at different

sample bias voltages. The PL spectra show emission from different sample layers for CW excitation

at 780 nm through the aperture indicated in the upper-left inset. The general range of QD emission

wavelengths is also indicated, though QD emission lines are too weak to be observed on these scales.

at the sample modulation frequency.

4.2 QD Characterization with PL Spectroscopy

In PL studies, the MIRA 900 is operated in CW mode and tuned to 780 nm. At

this wavelength, the MIRA 900 serves to generate electron-hole pairs in the various

layers of the sample that then recombine and emit photons whose energies depend on

the layer properties. By measuring this emitted light with the HR 640 we can detect

the emission intensity (CCD counts per pixel) as a function of emission wavelength

or energy.

In general, the sample is first characterized in PL studies before individual QD

states are characterized. Figure 4.4 shows the sample emission spectra for sample

R060913G at different external bias voltages. Of key importance is the lack of an

ensemble emission signal covering the range of QD state emission energies. This type

of ensemble emission signal has been observed in similar samples studied in our lab

and is believed to be a result of the migration of Te into the sample layers near

the QDs (as discussed previously in Section 2.1). The presence of this ensemble of

states covering the QD transition energy range generally interferes with time-domain
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optical studies of single dots as these ensemble states also absorb, making it difficult

to distinguish the QD signal.

Once the sample emission has been characterized, single QD spectra are obtained.

These spectra are obtained in the same manner as the sample spectra, as some of

the electron-hole pairs generated by the 780 nm CW field in the GaAs layers and

the WL relax into the QDs, where they recombine and emit photons whose energies

correspond to QD energy levels. PL “maps” are given in Figures 4.5(a) and (b),

showing the emission intensity from individual QD states as a function of energy and

sample bias. Charge transitions in two separate dots are shown in Figure 4.5(a) with

both dots switching from containing no charges to containing a single electron around

a sample bias of −0.5 V. The roughly 5 meV shift in emission energies is characteristic

in these samples and indicates the difference in binding energies between the neutral

exciton and the trion. The yellow boxes in Figure 4.5(a) indicate the emission lines

associated with the dot that is the focus of studies in this thesis, referred to as QD

#1. The other dot in this aperture, QD #2, will be shown to play a role in time-

domain studies of QD #1 later in this Chapter. Figure 4.5(b) plots the emission of

the two trion states from Figure 4.5(a) for an extended range of voltages, showing no

additional charge states as the bias is increased.

Once a particular QD has been characterized in PL, the next step in QD state

characterization is CW Stark-shift modulation absorption spectroscopy [206], a tech-

nique that measures the absorption spectrum of a particular state of interest. The

details of this experimental method are discussed in the following section.

4.3 CW Stark-Shift Modulation Absorption Spectrocsopy

CW Stark-shift modulation absorption spectroscopy is an experimental method

that allows for the measurement of single QD absorption spectra using phase sensitive

techniques. This method relies on DC Stark shifting the QD transition energies to

modulate the absorption of a narrow-bandwidth CW field tuned in energy near one

of the QD transitions. At a particular sample bias voltage VDC the absorption A of
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Figure 4.5: Emission spectra of aperture Dp2(9) [circled in the inset of (a)] as a function of applied

sample bias and emission energy for two different energy/bias ranges. (a) Emission spectrum showing

charge transitions for QD #1 and QD #2 in the −0.6 V to −0.4 V range. The lines surrounded by

the yellow boxes indicate the states of QD #1, the primary dot studied in this thesis. The emission

of QD #1 switches from containing no charges (X0) to containing a single electron (X1−) when

the sample bias is increased above −0.55 V. The slight positive sloping of the emission lines is a

result of the DC Stark shift, which blue-shifts each emission line as the bias voltage is increased.

(b) The extended spectrum of the trion emission lines for QD #1 and QD #2, showing that trion

emission covers a long voltage range with the peaks broadening considerably as the sample voltage

is increased.
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the CW field has the form

A =
®0°

2

(VDC − V0)2 + °2
(4.1)

where V0 is the voltage at which the QD transition is exactly resonant with the CW

field, ° is the QD transition dephasing rate and ®0 is the CW field absorption on-

resonance, which is taken to be≪ 1 [207]. In principle, this absorption can be detected

directly by measuring the transmitted CW field on a square-law detector as a function

of VDC. However, given the weak scattering of the incident light by individual self-

assembled QDs, this direct approach generally requires the use of solid immersion

lenses (SILs) and numerical aperture increasing lenses (NAILs) that improve the

coupling of the QD to the excitation light and the collection efficiency to attain a

sufficiently high signal-to-noise ratio (SNR) [208].

The use of phase sensitive techniques provides a means of achieving the requisite

SNR for single self-assembled QD absorption measurements without the use of SILs

or NAILs. In this case, a square wave modulation is applied to the sample bias

voltage such that the total voltage across the sample V (t) has the form V (t) =

VDC+VAC ⋅SW(t) where VAC is the amplitude of the square-wave component, SW(t),

of the total sample voltage. Modulation of the sample bias leads to modulation of

the absorption A of the CW field tuned near the QD transition, where the amplitude

of the absorption modulation, Amod, is

Amod =

∣∣∣∣
®0°

2

(VDC + 1
2
VAC − V0)2 + °2

− ®0°
2

(VDC − 1
2
VAC − V0)2 + °2

∣∣∣∣ . (4.2)

This modulation of the absorption leads to a modulation of the transmitted CW

field amplitude and, in turn, a modulation of the photocurrent generated by the

transmitted CW field on the APD. The voltage generated by this current across a 10

kΩ is measured by the lock-in amplifier, which is synchronized to the signal generator

by an external reference signal provided by the signal generator. The lock-in amplifier

amplifies the input voltage signal, digitizes it and then multiplies it separately by

digital sin(!reft + Áref) and cos(!reft + Áref) functions, where !ref is the sample bias

modulation frequency and Áref is the internal phase of the lock-in amplifier. These
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two products are then passed through a series of digital low-pass filters, the outputs

serving as the “X” and “Y” channel signals. These outputs thus correspond to a

narrow portion of the Fourier spectrum of the digitized input voltage signal centered

at the reference frequency !ref, the width and fall-off of this distribution determined

by the lock-in time constant and the number of digital low pass filters employed,

respectively.

Figure 4.6 provides a detailed depiction of the CW Stark-shift modulation absorp-

tion spectroscopy technique, illustrating the form of the lock-in detected X-channel

for two different VAC values at Áref = 0. For values of VAC much smaller than the

absorption linewidth (in voltage), the lock-in X-channel signal as a function of VDC

effectively gives the first derivative of the absorption profile [orange curve in Fig-

ure 4.6(e)]. Increasing the value of VAC beyond the absorption linewidth separates

the signal into identical positive and negative peaks, each giving the absorption pro-

file of the state [light blue curve in Figure 4.6(e)]. We note that CW Stark shift

modulation absorption spectroscopy may also be performed by keeping the values of

VDC and VAC fixed and scanning the frequency of the CW field, yielding the same

types signals for small and large voltage modulation as a function of laser frequency.

An absorption spectrum for the trion of QD #1 is given in Figure 4.7, where

the lock-in detected modulated absorption signal is plotted as a function of the Co-

herent 899-29 laser energy at different values of VDC for a small sample modulation

amplitude. Trion absorption occurs for VDC values in the range of 0.6 V to 2.4 V,

showing the expected anti-symmetric trace for VDC values away from the extremes of

the absorption range. At the extreme points of the absorption range, the shape of the

absorption profile deteriorates due to the instability of the QD charge state at those

voltage points. In the stable voltage range of the charged QD, the DC Stark effect is

linear, as shown in the lower-right inset of Figure 4.7.

Compared to the emission spectrum [Figure 4.5(b)], the absorption spectrum of

the trion of QD #1 covers a much more limited voltage range. Discrepancies such

as these between the emission and absorption spectra are commonly encountered in

QD studies and arise from differences in the physical processes involved in the two



50

∆V
A

 (
a

.u
.)

V     (a.u.)

Time (a.u.)

V(t) = V     +  V      SW(t) (a.u.)

b

a

c

d

Tref

∆t
ref

φ   = 2π        = 0
ref

Tref

∆tref

Tref

Time (a.u.)

Tref

M
o

d
. A

b
s.

 (
X

-C
h

., 
a

.u
.)

1

T
im

e
 (

a
.u

.)

e

L
o

c
k

-I
n

 R
e

f.
 (

a
.u

.)

DC AC

DC

A
 (

a
.u

.)

V     = V
DC 2 V     = V

DC 1

V     =
AC

∆V2V     =
AC

Amod

Figure 4.6: The CW Stark-shift modulation absorption spectroscopy method. (a) Sample bias

voltage V (t) as a function of time for small (green curve) and large (red curve) values of VAC. (b)

Theoretical absorption profile of an optical transition in a single QD (black curve), where A is plotted

as a function of VDC without voltage modulation. The vertical dotted lines indicate points on the

absorption profile corresponding to the sample bias voltage values. The dashed vertical lines indicate

the value of VDC for each particular voltage configuration. (c) The absorption A as a function of

time for the small (orange) and large (light blue) modulations. The modulation of the absorption

signal is a result of the modulated sample bias and occurs at the same frequency. (d) The lock-in

reference signal as a function of time. The reference signal oscillates at the same frequency as V (t)

as the lock-in external reference is provided by the signal generator driving the sample bias. The

phase difference between the lock-in and the signal generator, Áref = 2¼Δtref
Tref

, can be controlled and

determines the X and Y channel signals of the lock-in. (e) Simulated X channel signals as a function

of VDC for the two different values of VAC at Áref = 0. The smaller value of VAC (orange curve) leads

to a signal that resembles the derivative of the absorption lineshape while the larger value (light

blue curve) leads to a positive and negative peak separated by the value of VAC, each reflecting the

absorption lineshape of the transition.
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Figure 4.7: Absorption spectrum of the trion of QD #1, where the lock-in phase Áref is set such

that the modulated absorption signal is entirely in the X channel. Each absorption trace is obtained

by scanning the energy of the Coherent 899-29 through the trion transition energy at different values

of VDC (light blue voltage values) for a VAC value of 0.02 V. The upper-left inset shows the spectrum

obtained at VDC = 0.14 V. The lower-right inset plots the zero-crossing energy (green circle in the

upper-left inset) as a function of VDC, exhibiting the linearity of the Stark shift.

types of spectroscopy. PL spectroscopy generally involves the generation of many

electron-hole pairs in the GaAs layers and the WL of the sample that can shift the

transition energy of the QD and affect its charging properties. This is in stark contrast

to absorption studies, in which electron-hole pairs are generated directly in the dot.

The lack of the additional carriers present in PL studies can lead to differences in the

measured transition energies and in the observed charging characteristics.

Determination of the absorption range of the trion in voltage and excitation en-

ergy is crucial for time-domain studies of a singly charged self-assembled QD. In the

following section, we discuss how knowledge of the trion absorption range obtained

in CW studies is used to successfully demonstrate pulsed optical read-out of a single

InAs QD.
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4.4 Pulsed Stark-Shift Modulation Absorption Spectrocsopy

The ability to perform pulsed optical read-out of single InAs QDs using a single

train of optical pulses is crucial for time-resolved studies of transient QD phenomena.

As mentioned previously, homodyne measurements of single self-assembled QDs with

optical pulses are non-trivial due to the relatively small signal strengths compared

to the large backgrounds from which these signals must be extracted. Pulsed optical

measurements of single interface fluctuation QDs previously performed in this labo-

ratory [107,139,204,205] have typically relied on amplitude modulation of the pump

and probe beams (the so-called “double-chopping” scheme), resulting in a lock-in de-

tected signal proportional to third and higher order terms of the QD optical response.

Lack of sensitivity to the first order response poses a significant challenge in applying

this method successfully to studies of single self-assembled QDs.

Due to these challenges, we have developed a new approach to performing pulsed

optical measurements of single QDs that is sensitive to the first order optical response

of the dot. This approach is the pulsed analogue of the CW Stark-shift modulation

absorption technique presented in the previous section. In this approach, the optical

pulses are centered in energy on the trion absorption range determined in the CW

modulated absorption studies of Figure 4.7. In addition, the sample bias is modu-

lated between two values, VL and VR, where VL sets the QD to a state that does not

interact with the incident light and VR lies within the absorption range of the trion.

Modulation of the sample bias voltage between these two values serves to effectively

switch off and on the optical interaction of the dot with the incident pulses. Fig-

ure 4.8 illustrates the basic scheme of the pulsed Stark-shift modulation absorption

spectroscopy technique.

As discussed in Section 3.3, an optical pulse resonantly tuned to a single transition

in the QD generates an optical polarization within the dot that radiates a field.

Modulation of the sample bias voltage between VL and VR effectively modulates the

optically generated polarization in the dot and, thus, the amplitude of the radiated

field. It is this modulation that leads to the lock-in detected photocurrent terms of

Equation 3.38.
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Figure 4.8: Arrangement of the QD energies (EQD), pulse spectrum and trion absorption range in

pulsed optical measurements of the trion state in a singly charged InAs QD.

In experiments, we consider the operation of an incident train of x̂ or ŷ polarized

pulses. In this case, both two-level systems in the dot are excited equally, resulting

in a total QD polarization consisting of contributions from each two-level system.

These contributions generate a total radiated field that is linearly polarized and whose

amplitude is proportional to the amplitude of the field radiated by one of the two-

level systems. As the electron spin in the dot at zero magnetic field is taken to be

in a completely mixed state prior to excitation, the component of the photocurrent

detected by the lock-in amplifier has the form

ILIsig = −
√

2¹M

²
Ka(ℏ!0) sin

2[µ(∞)/2], (4.3)

where we see that the signal oscillates as a function of the pulse area µ(∞). These

oscillations are the so-called Rabi oscillations that are driven between the electron

spin state and the trion state by the optical pulses and can be observed by performing

power dependent studies. We note that because of the low maximum input current

limit imposed by the EG&G in current mode operation, we instead detect the modu-

lated components of the voltage generated by the APD photocurrent across a 10 kΩ

shunting resistor, Vsig, which is proportional to ILIsig.

Figure 4.9 shows time-averaged measurements of Vsig (X channel) for a single

incident pulse train as a function of VR at an average power of 500 ¹W with VL = −1

V. A pronounced dip in the VR scan occurs in the 0.1 V to 0.35 V range of VR due to
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Figure 4.9: Time averaged Vsig measurements (X channel) as a function of VR for the trion of QD

#1 using a single pulse train of 500 ¹W average power with VL = −1 V. The dip is the result of

the detection of the field radiated by the QD and is shaded to indicate the difference between the

background signal level (black dashed line) and the QD signal.

the detection of the field radiated by the QD. This voltage range is consistent with

the voltage range in CW absorption studies of the trion, albeit slightly longer. In

addition to the dip in Vsig, an overall background signal is apparent in the data of

Figure 4.9, the level of which is estimated by the black dashed line. This background

signal is attributed to the ensemble of states provided by migrated Te, as it is much

larger in other samples characterized in our laboratory that show a more pronounced

ensemble emission spectrum in the QD energy range (data not shown). The difference

between this background level and the QD signal is given roughly by the grey shaded

area of the figure.

Vsig measurements as a function of VR at several different average pulse powers are

plotted in Figure 4.10, showing an oscillation in the difference between the background

signal and the QD signal as the average pulse power is increased. This oscillation

reflects a complete Rabi oscillation between the electron spin state and the trion

state in each two-level system in the dot. This result demonstrates the ability not

only to perform pulsed optical read-out of a single self-assembled QD but also to

coherently control the electron-trion transition with optical pulses, a crucial step

towards coherent optical control of the electron spin in the dot. In the following
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Figure 4.10: VR scans of the trion in QD #1 at different average pulse powers for VL = −1 V. The

difference between the background signal level and the QD signal level (shaded gray areas) undergoes

a complete oscillation as the average pulse power is increased, indicating a complete Rabi oscillation

between the electron and trion states in the dot. The dependence of the background signal level on

the average pulse power is also shown.

sections, these results are built upon in pump-probe studies employing two time-

delayed pulse trains and are used to demonstrate time-resolved measurements of

transient QD phenomena.

4.5 Pump-Probe Studies with Bext = 0: Trion Decay and Trion Rabi

Oscillations

By introducing an additional time-delayed pulse train in the experimental setup,

Vsig measurements may also be used to monitor the time-evolution of QD phenomena.

For pump-probe studies at zero magnetic field, the probe-generated Vsig signal can

be used to observe the excitation and decay of trion population generated by the

preceding pump pulse, as well as Rabi oscillations between the electron spin states

and the trion states in the QD.

In these studies, VL is set to −1 V and VR is set to the center of the dip in

Figure 4.9. The pump and probe fields are linearly cross polarized to enable post

sample filtering of the pump using a Babinet-Soliel compensator with a polarizer so
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Figure 4.11: Time-averaged Vsig measurements as a function of pulse delay td showing the gener-

ation and exponential decay of pump-generated trion population, as indicated by the energy level

diagrams given above the graph. A fit of the data to Equation 4.4 is given by the red curve, which

yields a trion relaxation time of 855± 74 ps.

that only the probe is detected by the APD. The time delay td between the pump

and probe pulse trains is scanned over a specified range and Vsig measurements are

averaged over the course of several hours to obtain sufficiently high SNR. Since the

pump and probe pulse trains traverse separate paths of approximately 5 m before

reaching the sample, the lack of active phase stabilization between the two pulse

trains results in the averaging out of the second term of Equation 3.42 in these studies.

This is due primarily to air currents and laboratory temperature instabilities that can

result in fluctuations in the path difference between the pump and probe beams of

up to a few optical wavelengths. In order to compensate for these fluctuations in

the path difference, feedback-stabilized Michelson interferometer setups are generally

implemented, where one of the legs is mounted on an actively controlled piezoelectric

translation stage (see, for instance, Reference [139]). Without such a setup, the lock-

in detected voltage is proportional to the “population” term in Equation 3.42 and

thus has the form

Vsig = M sin2[µpr/2]

[
sin2[µpu/2]Θ(td)e

−Γttd − 1

2

]
(4.4)

where M is the proportionality constant relating ILIsig to Vsig. Vsig measurements as
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a function of pulse delay are plotted in Figure 4.11 for pump and probe powers

corresponding roughly to a ¼-pulse and a ¼/3-pulse, respectively, for each transition

in the dot, clearly showing the generation of trion population at td = 0 and its

subsequent decay. By fitting the data of Figure 4.11 to Equation 4.4, a trion relaxation

time T t
1 of 855± 74 ps is extracted, consistent with values reported in separate trion

linewidth measurements of similar dots [128].

As the amplitude of the exponentially decaying term in Equation 4.4 depends

on both pump and probe pulse areas, measurements of Vsig at a fixed positive delay

as a function of either pulse area will show oscillations due to optically driven Rabi

oscillations between the electron and trion states. Though such oscillations were al-

ready observed as a function of pulse area in the one-pulse studies of the previous

section, two-pulse studies allow for a more straightforward analysis of the Rabi os-

cillations. Here, we consider pump-driven Rabi oscillations and note the need to

account for a pump pulse area dependent offset in delay scan measurements of Vsig

arising from pump leakage through the post-sample filtering setup. To account for the

pump-dependent background, we take the difference between Vsig measurements at a

positive pulse delay and a negative pulse delay, i.e. Vsig(td = t−)−Vsig(td = t+) where

t+(−) is a positive (negative) value of the pulse delay, as a function of pump pulse

amplitude. Figure 4.12(a) plots these difference measurements as a function of the

pump amplitude Epu for t− = −t+ = −50 ps. Two complete oscillations are shown

with an oscillatory fit (red curve) yielding a trion dipole moment of approximately 8

Debye, consistent with one-pulse studies.

In addition to the two complete Rabi oscillations observed in Figure 4.12, a higher

frequency oscillation is apparent in the data that is most pronounced at the peaks of

the primary oscillations, showing up as slight “dimples.” This feature in the data is

repeatable and is believed to be the result of the optical pulses off-resonantly exciting

the trion of QD #2 in this aperture. To strengthen this claim, numerical calculations

of the modulated photocurrent were performed that include the energy levels of QD

#2. In these calculations, a trion dipole moment of ∼ 16 D is assumed. Theoretical

calculations under these conditions are plotted in Figure 4.12(b), exhibiting the same
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Figure 4.12: (a) Experimentally measured Vsig values as a function of pump pulse area Epu showing

two complete pump-driven Rabi oscillations between the electron and trion states in QD #1. An

oscillatory fit of the data (red curve) yields a trion dipole moment of ∼ 8 Debye. (b) Theoretical

plot of the modulated APD photocurrent as a function of pump pulse area taking into account the

trion state of QD #2, which is assumed to have a dipole moment approximately twice that of QD

#1.

behavior as the experimentally measured Vsig values, supporting the hypothesis that

the dimpling phenomenon is due to the presence of QD #2.

4.6 Pump-Probe Studies with Bext = Bx̂: Electron and Heavy-Hole Spin

Quantum Beats

Application of an external DC magnetic field in the Voigt geometry enables the

observation of electron and heavy-hole spin precession with the use of circularly po-

larized pump and probe beams, as discussed in Section 3.5. For the case of circularly

cross-polarized beams, Vsig measurements as a function of pulse delay have the form

Vsig = M sin2[µpr/2]×{
1

4
sin2[µpu/2]Θ(td)

[
2e−2Γttd − e−td/T

e∗
2 cos(Δetd)− e−2Γttde−td/T

ℎ∗
2 cos(Δℎtd)

]
− 1

2

}

(4.5)

where we see that the signal consists of two damped oscillations, each reflecting the

precession (and dephasing) of a particular spin in the dot. Experimental measure-

ments of Vsig are plotted in Figure 4.13 as a function of td for two external magnetic

field strengths. The data show a two-frequency oscillation as a function of pulse delay

at each magnetic field value due to the precession of both electron and heavy-hole
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spins, as expected from the theory.
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Figure 4.13: Vsig measurements as a function of td for circularly cross-polarized excitation at

B = 3.3 T and B = 6.6 T. The red curves are fits obtained with Equation 4.5 taken in the limit of

infinitely long electron and heavy-hole spin coherence times.

As the range of pump-probe delays considered in Figure 4.13 is much shorter than

anticipated electron and heavy-hole spin coherence times [120,124], we are unable to

extract reliable values of the electron and heavy-hole spin coherence times. To obtain

reliable values of the electron and heavy-hole spin coherence times, considerably longer

delays would need to be considered in order to clearly observe the damping associated

with each oscillating term. Due to the amount of averaging required to achieve

sufficiently high SNR, these extended pulse delay range studies would require the

averaging of data sets obtained over the course of multiple days and have not been

pursued in this thesis. Instead, the data of Figure 4.13 are fit to Equation 4.5 taken

in the limit of infinitely long electron and heavy-hole dephasing times, resulting in

the solid red curves of Figure 4.13. The agreement between the data and the fitting

indeed suggest spin coherence times that are much longer than the pump-probe delay

values considered here. From the fittings we obtain electron and heavy-hole in-plane

g-factor magnitudes ∣ge∣ and ∣gℎ∣ of .378± .007 and .202± .006, respectively.

4.7 Chapter Summary
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The experimental setup and QD characterization process were discussed in detail.

PL spectroscopy was presented as the first characterization procedure, used to iden-

tify individual QD charge states and their sample bias voltage dependent transition

energies. CW Stark shift modulation absorption spectroscopy was presented as the

next characterization step, which enables the determination of the voltage and energy

ranges within which a particular QD state absorbs. For the trion of QD #1, knowl-

edge of this absorption range was applied to pulsed Stark shift modulation absorption

spectroscopy. These studies demonstrated the ability to read out the states of a single

InAs QD as well as the ability to coherently control the electron-trion transitions in

a single QD, as evidenced in the observation of pulse-driven Rabi oscillations. This

read-out method was then applied to pump-probe studies both with and without an

externally applied magnetic field, where phenomena such as trion excitation and de-

cay, trion Rabi oscillations and spin precession were experimentally observed. These

observations demonstrate that optical pulses may be used to coherently control the

transitions in a QD and to generate spin coherence via two-photon Raman transi-

tions. Such capabilities will be utilized in the following Chapters to demonstrate

optical manipulation of a spin qubit in a single InAs QD.



CHAPTER 5

Theoretical Spin Qubit Gates for an Electron Confined in an InAs QD

In the previous two Chapters we investigated pulsed optical studies of a single self-

assembled InAs QD, demonstrating read-out of QD states, coherent control of optical

transitions in the QD and optically generated two-photon Raman coherence between

spin states in the QD. Building upon these results, we now pursue demonstrations

of qubit gates for an electron spin confined in a single InAs QD, first discussing

the theory of possible spin control mechanisms in the singly charged QD system.

These theoretical considerations allow for the description of the various spin control

mechanisms in terms of unitary transformation matrices that can then be used to

construct a number of critical single qubit gates.

Here, we consider three primary means of spin control: optical pulses highly de-

tuned from the electron-trion transition, an external DC magnetic field and a narrow-

bandwidth CW field tuned to one of the electron-trion transitions in the QD. Unitary

transformation matrices describing each type of spin manipulation are obtained by

solving for the probability amplitudes of the four-level system. As will be seen, spin

control mechanisms enable the rotation of the spin vector about two orthogonal axes,

thus providing a means of constructing arbitrary unitary single qubit operations [39].

Possible spin qubit gates for each spin control mechanism are then presented, with

particular attention given to the phase gate S, the ¼/8 gate T and the Hadamard

gate H, as these single qubit gates can be used with either two-bit controlled-NOT

gates [3] or two-bit exclusive OR gates [39] to construct an arbitrary unitary opera-

tion on n qubits [209]. Finally, as the Hadamard gate requires a series of rotations

61
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about orthogonal axes, a number of different methods of constructing this gate are

presented.

5.1 The Interaction of a Highly-Detuned Optical Pulse with a QD Con-

fined Electron Spin

We first investigate the operation of a pulse that is highly detuned from the

electron-trion transition. Highly detuned pulses are chosen since they leave a min-

imal amount of population in the trion states after excitation. Such population is

undesirable as it reduces the fidelity of spin qubit operations. In addition, we con-

sider the case where an external DC magnetic field is applied in the Voigt geometry.

This particular geometry is chosen as it enables the use of spin precession to rotate

the spin (discussed later in this Chapter) and has been demonstrated to permit fast

spin initialization times on the order of 10−9 s [128], while spin preparation schemes

in other geometries such as the Faraday geometry (magnetic field along growth axis)

require times on the order of 10−6 s [126]. Implementation of the Voigt profile spin

preparation scheme will be discussed in the following Chapter, as it will serve as the

crucial first step in experimental demonstrations of coherent control of the electron

spin.

5.1.1 Equations of Motion for the Electron Spin Probability Amplitudes

Figure 5.1 shows the energy level diagram of the system along with the labeling

scheme used to simplify mathematical expressions. Energy scales are also indicated,

as well as the quantities associated with the optical pulse (!p, ±p) and the narrow-

bandwidth CW field (!cw, ±cw) considered later in this Chapter. The excitation pulse

is taken to have the form

Ep(t) =
1

2
Epsech

(
t

¿

)[
²̂e−i!pt + c.c.

]
(5.1)

where ²̂ = (1/
√
2)(x̂ + eiÁŷ) is the pulse polarization and is left in terms of a phase
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Figure 5.1: Energy level diagram showing the state labels and parameter definitions for the pulsed

and CW optical fields. Λ1 and Λ2 indicate the two two-photon quantum mechanical pathways

between the electron spin states.

Á between the x̂ and ŷ components to allow discussion of polarization dependent

physics. From Equation 5.1 and the selection rules calculated in Appendix A, the

matrix elements of the dipole interaction are

V14 = V41 = V23 = V32 = −ℏÂp√
2
sech

(
t

¿

)[
e−i!pt + ei!pt

]
(5.2)

V13 = V24 = −V31 = −V42 = −i
ℏÂp√
2
sech

(
t

¿

)[
eiÁe−i!pt + e−iÁei!pt

]
(5.3)

where Âp =
¹Ep

2ℏ . The total Hamiltonian is then

H =

⎡
⎢⎢⎢⎢⎢⎢⎣

−ℏΔe

2
0 V13 V14

0 ℏΔe

2
V23 V24

V31 V32 ℏ!0 − ℏΔℎ

2
0

V41 V42 0 ℏ!0 +
ℏΔℎ

2

⎤
⎥⎥⎥⎥⎥⎥⎦
. (5.4)

To formulate the operation of the pulse on the electron spin states, we need to

solve for the probability amplitudes of the electron spin states. In other words, for

the electron spin wavefunction

∣Ψe
x(t)⟩ = C1(t)∣1⟩+ C2(t)∣2⟩ (5.5)
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we seek to describe the operation of the highly detuned pulse in terms of a unitary

transformation matrix Up(t
′, t) where

⎡
⎣ C1(t

′)

C2(t
′)

⎤
⎦ =

⎡
⎣ Up(t

′, t)

⎤
⎦
⎡
⎣ C1(t)

C2(t)

⎤
⎦ . (5.6)

To do this, we need to solve the Schödinger equation for the entire four level system

of Figure 5.1 in the amplitude picture, i.e. for the total system wavefunction

∣Ψtot⟩ = C1(t)∣1⟩+ C2(t)∣2⟩+ C3(t)∣3⟩+ C4(t)∣4⟩ (5.7)

we seek solutions to the set of first order differential equations generated by the

relation

Ċi(t) =
1

iℏ
∑
j

HijCj(t). (5.8)

We note that although the amplitude picture does not take into account decay pro-

cesses such as trion and spin relaxation that generally detract from the unitary de-

scription of the pulse operation, the errors introduced by these processes are small

enough to be ignored as the timescale of the pulse operation (< 2 ps) is orders of

magnitude shorter than the timescales of all relaxation processes in the dot.

To solve the differential equations generated by Equation 5.8, we first move into

the FIP using the transformations

C1,2(t) = C̃1,2(t) (5.9)

C3,4(t) = C̃3,4(t)e
−i!pt (5.10)

and then apply the RWA to obtain the following equations of motion:

˙̃C1(t) =
iΔe

2
C̃1(t) +

iÂp√
2
sech

(
t

¿

)[
ie−iÁC̃3(t) + C̃4(t)

]
(5.11)

˙̃C2(t) = −iΔe

2
C̃2(t) +

iÂp√
2
sech

(
t

¿

)[
C̃3(t) + ie−iÁC̃4(t)

]
(5.12)

˙̃C3(t) = −i

(
±p − Δℎ

2

)
C̃3(t) +

iÂp√
2
sech

(
t

¿

)[
−ieiÁC̃1(t) + C̃2(t)

]
(5.13)

˙̃C4(t) = −i

(
±p +

Δℎ

2

)
C̃4(t) +

iÂp√
2
sech

(
t

¿

)[
C̃1(t)− ieiÁC̃2(t)

]
. (5.14)
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We now make use of the fact that the pulses are highly detuned from the electron-

trion transition, specifically considering the pulses to be red -detuned (±p > 0), and

take the following conditions [210] to be satisfied:

±p ≫ Δe, Δℎ (5.15)

∣ÂpC1(t)∣ ≫
∣∣∣∣
d

dt

(
ÂpC1(t)

±p

)∣∣∣∣ (5.16)

∣ÂpC2(t)∣ ≫
∣∣∣∣
d

dt

(
ÂpC2(t)

±p

)∣∣∣∣ . (5.17)

These conditions allow us to solve for the probability amplitudes of the trion states

by integrating Equations 5.13 and 5.14 by parts, yielding

C̃3(t) ≈ Âp√
2±p

sech

(
t

¿

)[
−ieiÁC̃1(t) + C̃2(t)

]
(5.18)

C̃4(t) ≈ Âp√
2±p

sech

(
t

¿

)[
C̃1(t)− ieiÁC̃2(t)

]
(5.19)

where the trion states have been “adiabatically eliminated” by expressing their proba-

bility amplitudes in terms of electron spin probability amplitudes. These approxima-

tions leave us only with the equations of motion governing the electron spin probability

amplitudes, i.e.

˙̃C1(t) =

[
iΔe

2
+

iÂ2
p

±p
sech2

(
t

¿

)]
C̃1(t) + Re

[
ie−iÁ

] iÂ2
p

±p
sech2

(
t

¿

)
C̃2(t) (5.20)

˙̃C2(t) = Re
[
ie−iÁ

] iÂ2
p

±p
sech2

(
t

¿

)
C̃1(t) +

[
−iΔe

2
+

iÂ2
p

±p
sech2

(
t

¿

)]
C̃2(t). (5.21)

By solving these equations under certain conditions we may obtain the unitary trans-

formation associated with the operation of the pulse, but before doing so it is worth-

while to take a closer look at the physics behind them.

5.1.2 Effective Hamiltonian and Bloch Sphere Representation

From Equations 5.20 and 5.21 we can express an effective electron spin Hamilto-

nian Hspin as

Hspin = ℏ

⎡
⎣

−Δe

2
− Â2

p

±p
sech2

(
t
¿

) −Re
[
ie−iÁ

] Â2
p

±p
sech2

(
t
¿

)

−Re
[
ie−iÁ

] Â2
p

±p
sech2

(
t
¿

)
Δe

2
− Â2

p

±p
sech2

(
t
¿

)

⎤
⎦ (5.22)
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where we see from the diagonal terms that, in addition to the Zeeman splitting, there

is a pulse induced AC Stark shift of both electron spin states to lower energies. Of

particular interest is the dependence of the off-diagonal matrix elements of Hspin on

the phase between the x̂ and ŷ components of the pulse polarization ²̂. For linear

polarization, (Á = ¼n where n is an integer) these matrix elements are zero, while for

circular polarization (Á = ¼/2 + ¼n where n is an integer) the magnitude of each of

these elements is maximized.

To more clearly see the physical consequences of this polarization dependence, we

disregard the AC Stark shifts of the electron spin states and compare the form of

Hspin with the standard two-level FIP Hamiltonian

H̃ = ℏ

⎡
⎣ − ±̃

2
Ẫ∗

Ẫ ±̃
2

⎤
⎦ (5.23)

finding that

±̃ = Δe (5.24)

Ẫ = −Re
[
ie−iÁ

] Â2
p

±p
sech2

(
t

¿

)
. (5.25)

We then employ the machinery of the Bloch sphere representation in {u, v, w} space

[211] with the definitions

B =

⎡
⎢⎢⎢⎣

Bu

Bv

Bw

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

2Re[½̃12(t)]

−2Im[½̃12(t)]

½̃22(t)− ½̃11(t)

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

2Re[C̃1(t)C̃
∗
2(t)]

−2Im[C̃1(t)C̃
∗
2(t)]

C̃2(t)C̃
∗
2(t)− C̃1(t)C̃

∗
1(t)

⎤
⎥⎥⎥⎦ (5.26)

Ω =

⎡
⎢⎢⎢⎣

Ωu

Ωv

Ωw

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

2Re[Ẫ]

−2Im[Ẫ]

±̃

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

−2Re
[
ie−iÁ

] Â2
p

±p
sech2

(
t
¿

)

0

Δe

⎤
⎥⎥⎥⎦ (5.27)

dB/dt = Ω×B (5.28)

where Equation 5.28 signifies that the spin Bloch vector B precesses about the psued-

ofield vector Ω at the angular frequency ∣Ω∣. We make use of the fact that the spin

Bloch sphere in {u, v, w} space bears a direct relationship to the Bloch sphere in
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real space, allowing us to describe the time-evolution of the spin vector in terms of

real-space coordinates (Appendix C), i.e.

û → ẑ (5.29)

v̂ → ŷ (5.30)

ŵ → −x̂, (5.31)

leading to a real space psuedofield vector of the form

Ω =

⎡
⎢⎢⎢⎣

Ωx

Ωy

Ωz

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

−Δe

0

−2Re
[
ie−iÁ

] Â2
p

±p
sech2

(
t
¿

)

⎤
⎥⎥⎥⎦ . (5.32)

The dynamics of the spin vector in real space then lends itself to a straightforward

description: before and after the pulse the psuedofield vector lies along −x̂, resulting

in a clock-wise rotation of the spin vector about the x̂ axis at an angular frequency of

Δe. This behavior corresponds to spin precession about the external magnetic field

and will be discussed in more detail in the following section. During the pulse, the

psuedofield vector has an additional component lying along the ẑ axis only if the pulse

is elliptically or circularly polarized. In addition, the pulse dependent component of

the psuedofield vector rotates the spin vector only about the ẑ axis; rotations about

other axes are not possible with highly detuned pulses. This limitation is the result

of interference between the two two-photon quantum mechanical pathways (Λ1 and

Λ2 of Figure 5.1) between the two spin states.

To obtain rotations of the spin about an axis orthogonal to the ẑ axis requires the

use of either spin precession about the external magnetic field or geometric phases

imparted by optically driven 2¼ rotations of the trion transitions in the dot, as will

be shown later in this Chapter. For now, we consider solutions to Equations 5.20 and

5.21 for a circularly polarized pulse.

5.1.3 Unitary Transformation Matrix for a Circularly Polarized Pulse

The unitary transformation associated with the operation of a ¾̂+ polarized pulse

(Á = 0) may be obtained by ignoring the AC Stark shifts—since they are equal for



68

both spin states—and making use of the fact that the operation time of the pulse (i.e.

the pulse width) is much shorter than the spin precession period for magnetic fields

of a few T or more, allowing us to disregard the effect of spin precession during the

pulse. These simplifications result in equations of the form

˙̃C1(t) =
iÂ2

p

±p
sech2

(
t

¿

)
C̃2(t) (5.33)

˙̃C2(t) =
iÂ2

p

±p
sech2

(
t

¿

)
C̃1(t), (5.34)

yielding the unitary transformation matrix

Up(t
′, t) =

⎡
⎣ cos

{
Â2
p¿

±p

[
tanh

(
t′
¿

)− tanh
(
t
¿

)]}
i sin

{
Â2
p¿

±p

[
tanh

(
t′
¿

)− tanh
(
t
¿

)]}

i sin
{

Â2
p¿

±p

[
tanh

(
t′
¿

)− tanh
(
t
¿

)]}
cos

{
Â2
p¿

±p

[
tanh

(
t′
¿

)− tanh
(
t
¿

)]}
⎤
⎦ .

(5.35)

For a general set of initial conditions before the pulse, the state of the system after

the pulse can be described by the approximate unitary transformation

Up(µ) =

⎡
⎣ cos(µ/2) i sin(µ/2)

i sin(µ/2) cos(µ/2)

⎤
⎦ , µ =

Ω2
p¿

±p
(5.36)

where Ωp =
¹Ep

ℏ . This approximate unitary transformation matrix is more than 99%

accurate as long as the magnitudes of t′ and t are greater than 3¿ .

The unitary transformation matrix of Equation 5.36 has the form of a clockwise

rotation about the ẑ axis by an angle µ. Notable spin qubit gates [3] that may be

constructed by the operation of a detuned circularly polarized pulse (to within an

arbitrary global phase) are the X gate,

Up(µ = ¼) = ei¼/2

⎡
⎣ 0 1

1 0

⎤
⎦ = ei¼/2X, (5.37)

a prevalent gate in stabilizer codes for quantum error correction [3], and the gate

Up(µ = ¼/2) =
1√
2

⎡
⎣ 1 i

i 1

⎤
⎦ , (5.38)
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which will play a crucial role in the construction of a Hadamard gate later in this

Chapter.

5.2 The Operation of the External Magnetic Field

As discussed in the previous section, the Zeeman splitting between the electron

spin states generated by the magnetic field leads to a constant component of the

psuedofield vector along the x̂ axis, resulting in spin precession. The unitary transfor-

mation matrix associated with the operation of the magnetic field can be determined

by solving Equations 5.20 and 5.21 in the absence of the pulse, i.e.

˙̃C1(t) =
iΔe

2
C̃1(t) (5.39)

˙̃C2(t) = −iΔe

2
C̃2(t). (5.40)

Solutions to these equations are trivial and yield

UB(t
′, t) = UB(#) =

⎡
⎣ ei#/2 0

0 e−i#/2

⎤
⎦ , # = Δe(t

′ − t) (5.41)

which is a clock-wise rotation about the x̂ axis. This unitary transformation matrix

may be used to form the important S and T gates,

UB(# = 3¼/2) = e3i¼/4

⎡
⎣ 1 0

0 i

⎤
⎦ = e3i¼/4S (5.42)

UB(# = 7¼/4) = e7i¼/8

⎡
⎣ 1 0

0 ei¼/4

⎤
⎦ = e7i¼/8T, (5.43)

as well as the Z gate

UB(# = ¼) = ei¼/2

⎡
⎣ 1 0

0 −1

⎤
⎦ = ei¼/2Z, (5.44)

which, as with the X gate, plays a crucial role in stabilizer codes.

As spin precession rotates the electron spin about the x̂ axis, combinations of

pulse-driven spin rotations about the ẑ axis and spin precession may be used to form
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a universal set of single spin qubit gates [39], a crucial requirement for executing

quantum algorithms with QD spins. There are, however, a number of drawbacks to

using spin precession to achieve universal qubit gates. For one, spin precession about

x̂ occurs continuously unless the spin is rotated by some other means to lie long x̂ or

the magnetic field is turned off. In other words, as long as the magnetic field is on

the spin vector orientation does not “stay put” unless it lies along the magnetic field

axis. Another drawback is that fast spin precession periods on the order of a few tens

of ps require large magnetic fields on the order of several Tesla.

An alternative approach to achieving spin rotations about an axis orthogonal to

the optical axis is by the use of optically imparted geometric phases, which we now

discuss.

5.3 Geometric Phases Imparted by a CW Field

The final means of spin control we consider is a CW field of the form

Ecw = x̂Ecw cos(!cwt) (5.45)

that serves to drive Rabi oscillations between states ∣1⟩ and ∣4⟩ in the dot. As any

cyclic evolution in a quantum system leads to the accruement of a geometric phase

[212], the optically driven trion Rabi oscillations impart a geometric phase to the

probability amplitude of the ∣1⟩ state for each complete 2¼ Rabi oscillation. This

optically imparted geometric phase depends on the CW field detuning and amplitude

and results in an effective rotation of the electron spin about the quantization axis,

which in this case is x̂ due to the external magnetic field.

This effective rotation can also be represented in terms of a unitary transformation

matrix, the form of which may be determined by solving for the probability amplitudes

of the system. To simplify the problem we take the detuning ±cw to be much smaller

than the sum of the electron and heavy-hole Zeeman splittings so that the CW field

does not drive the ∣2⟩ to ∣3⟩ transition, allowing us to simply consider the ∣1⟩ to ∣4⟩
transition. Assuming no initial population in the trion states, this simplification leads
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to the following expressions for the ∣1⟩ and ∣4⟩ probability amplitudes:

C1(t
′) = C1(t)e

−i±cw(t′−t)/2×
{

i±cw√
±2cw + Ω2

cw

sin

[
1

2

√
±2cw + Ω2

cw(t
′ − t)

]
+ cos

[
1

2

√
±2cw + Ω2

cw(t
′ − t)

]} (5.46)

C4(t
′) = −C1(t)e

−i!cwte−i±cw(t′−t)/2 iΩcw√
±2cw + Ω2

cw

sin

[
1

2

√
±2cw + Ω2

cw(t
′ − t)

]
(5.47)

where Ωcw = ¹Ecw

ℏ .

By inspecting Equations 5.46 and 5.47 we find that complete cycles in the trion

Rabi oscillation occur for t′ − t = Δtn = 2n¼√
±2cw+Ω2

cw

, where n is an integer indicating

the number complete trion Rabi oscillations that have occurred during the particular

time interval Δtn. At these particular points in time, the unitary transformation

matrix associated with the optically imparted geometric phase has the form

Ucw(t
′, t) = Ucw(Δtn) =

⎡
⎣ (−1)ne−i±cwΔtn/2 0

0 1

⎤
⎦ (5.48)

which can be rewritten as

Ucw(') = e−i'/2

⎡
⎣ (−1)ne−i'/2 0

0 ei'/2

⎤
⎦ , ' = ±cwΔtn/2. (5.49)

Equation 5.49 has the standard form of a counter-clockwise rotation about the x̂

axis for n even, the timescale of operation depending on the generalized Rabi period

Tcw = Δtn
n
.

As in the case of precession, S and T gates can be formed with proper selection

of parameters. For n odd,

Ucw(' = −¼/2) = −ei¼/2

⎡
⎣ 1 0

0 i

⎤
⎦ = −ei¼/2S (5.50)

Ucw(' = −3¼/4) = −e3i¼/4

⎡
⎣ 1 0

0 ei¼/4

⎤
⎦ = −e3i¼/4T (5.51)
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Figure 5.2: Bloch sphere representations (real space) and the unitary transformation matrices

associated with the three different means of electron spin control considered in this Chapter. The

Bloch spheres demonstrate the operation of each spin control mechanism on some initial spin vector

(green), resulting in a rotated spin vector (orange).

while for n even

Ucw(' = ¼/2) = e−i¼/2

⎡
⎣ (−1)n 0

0 i

⎤
⎦ = e−i¼/2S (5.52)

Ucw(' = ¼/4) = e−i¼/4

⎡
⎣ (−1)n 0

0 ei¼/4

⎤
⎦ = e−i¼/4T. (5.53)

In addition, for a resonant CW field (±cw = 0), the unitary transformation matrix has

the form

Ucw =

⎡
⎣ (−1)n 0

0 1

⎤
⎦ (5.54)

which is either the identity matrix I or a Z gate, depending on n.

A potential key advantage to utilizing the effect of geometric phases to perform

spin rotation is that these phases may be imparted by optical pulses, theoretically

enabling operation times as fast as several tens of ps in QD systems [133]. Even

faster operation times may be possible for systems possessing isolated excited states
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or an optical cycling transition [43,213]. In potential QD-based quantum computing

architectures, a combination of spatial selectivity and voltage control of the QD charge

state may be used to tailor the operation of optical pulses to particular QDs, enabling

dot-selective universal spin qubit operations.

Figure 5.2 provides a summary illustration of the three different spin control mech-

anisms considered in this Chapter, giving the Bloch sphere pictures of each type of

operation as well as the unitary transformation matrices associated with each. With

the three spin control mechanisms characterized, we now finally turn to methods of

constructing the Hadamard gate.

5.4 Hadamard Gate Construction

Operation Sequence Global Phase (Φ)

UB(# = ¼/2)Up(µ = ¼/2)UB(# = ¼/2) ¼/2

Ucw(' = ¼/2)Up(µ = ¼/2)Ucw(' = ¼/2) ¼ (n odd)

Ucw(' = ¼/2)Up(µ = ¼/2)UB(# = ¼/2) 3¼/4 (n odd)

Up(µ = ¼/2)UB(# = ¼/2)Up(µ = ¼/2) ¼/2

Up(µ = ¼/2)Ucw(' = ¼/2)Up(µ = ¼/2) 3¼/4 (n odd)

Table 5.1: Different combinations of the three unitary transformations resulting in a Hadamard

gate and the global phases for each.

Here, we consider different means of constructing the Hadamard gate

H =
1√
2

⎡
⎣ 1 1

1 −1

⎤
⎦ (5.55)

by forming different combinations of the three unitary transformations treated in

this Chapter. The basic procedure for Hadamard gate construction is to execute a

¼/2 rotation about some axis, execute a ¼/2 rotation about an orthogonal axis, and

then execute another ¼/2 rotation about the first axis. Table 5.1 gives a number of

the possible unitary transformation sequences that correspond to a Hadamard gate
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operation, as well as the global phase Φ associated with each sequence (i.e. eiΦH).

Though there are a number of different ways to construct a Hadamard gate operation,

we will consider the sequence given in the fourth row of Table 5.1 in the following

Chapter for experimental demonstrations.

5.5 Chapter Summary

Three different means of spin control were presented: circularly polarized pulses

red-detuned from the trion transition energies, an externally applied DC magnetic

field and a narrow-bandwidth CW field tuned near one of the trion transitions. Uni-

tary transformation matrices for each type of spin control method were determined

by solving for the probability amplitudes of the four level system. These matrices

revealed that detuned circularly polarized pulses execute spin rotations about the

optical axis ẑ, while the magnetic and CW fields rotate the spin about the magnetic

field axis x̂. Possible single qubit gates were given for each method of spin control,

and example sequences using multiple unitary transformation matrices were given for

the construction of a Hadamard gate. A number of the qubit gates presented will play

crucial roles in experimental demonstrations of spin control in the following Chapter.



CHAPTER 6

Experimental Demonstrations of Spin Qubit Rotations About Two

Orthogonal Axes

Ultimately, the development of a practical quantum computer consisting of qubits

based on the spin states of QD confined charges requires the ability to coherently

control these spins. As mentioned in Chapter 1, the use of optical techniques offers a

number of advantages for quantum computing, viz the ability to initialize, manipulate

and read-out spin qubit states. In particular, optical approaches offer the highly

attractive prospect of ultrafast spin qubit control, a capability that is unobtainable

with the electrically or magnetically based approaches to qubit control employed

in other quantum computing implementations. Further, optical control of a QD

confined spin in an externally applied DC magnetic field in the Voigt profile enables

the construction of arbitrary unitary operations on the spin qubit using a combination

of two-photon spin control and either spin precession or optically imparted geometric

phases.

In this Chapter, we experimentally demonstrate the coherent optical control of

an electron spin confined in a self-assembled InAs QD that is initialized to a pure

state. Initialization is achieved by tuning a narrow-bandwidth CW field to one of the

trion transitions in the QD, optically pumping the electron spin to a particular pure

state depending on which trion transition is driven [127, 128]. This same CW field

is also used to perform read-out by effectively measuring the amount of population

that re-enters the ∣1⟩ state after initialization, a method that is referred to as optical

tripwire read-out. With this read-out technique the operation of a single pulse is then

75
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investigated for different pulse detunings and polarizations, showing the complete two-

photon rotation of the electron spin about the optical axis ẑ for a detuned circularly

polarized pulse. Two-pulse studies are then performed to demonstrate spin rotation

by precession about the external magnetic field and are used to show a number of

spin qubit gates for different values of the pulse delay. Finally, two-pulse studies

covering an extended pulse delay range are then used to demonstrate net rotations

of the electron spin about the magnetic field axis as a result of the geometric phases

imparted to one of the electron spin states by the driving of trion Rabi oscillations

by the CW field after the first pulse.

6.1 Spin Initialization by Optical Pumping with a CW Field
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Figure 6.1: Illustration of the optical pumping process for a CW field tuned to the ∣1⟩ to ∣4⟩
transition. The electron spin is assumed to be in a mixed state prior to the operation of the CW

field and the trion relaxation rate Γt is assumed to be much greater than the electron spin relaxation

rate Γe.

To demonstrate complete coherent control of the electron spin, the spin is first

prepared in a pure state. In the Voigt configuration, this is done by tuning a narrow-

bandwidth CW field to one of the trion transitions in the dot. We choose the ∣1⟩
to ∣4⟩ transition. In this case, the CW field drives population to the ∣4⟩ state that

subsequently relaxes with equal rates Γt to both of the electron spin ground states.

Population that relaxes to the ∣2⟩ state begins to decay to ∣1⟩ at the spin relaxation

rate Γe, while population that relaxes back to ∣1⟩ is then re-excited by the CW field.

For a spin relaxation rate much slower than the trion relaxation rate, this process
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Figure 6.2: Theoretical plots of the time averaged absorption ⟨A⟩ as a function of laser frequency

for Γe ≳ Γt (black curve) and Γe ≪ Γt (red curve). Optical pumping, by depleting the ∣1⟩ state

population, leads to a diminished absorption signal.

repeats until the CW field optically pumps all ∣1⟩ population to ∣2⟩, as illustrated

in Figure 6.1. For CW trion Rabi frequencies greater than Γt, the optical pumping

timescale is limited by the trion relaxation rate and is defined in terms of the char-

acteristic timescale T0 = /Γt [127]. Based on absorption linewidth comparisons with

and without an externally applied magnetic field (data not shown), we take the trion

relaxation rate Γt to be independent of the magnetic field. From the trion decay

measurements of Section 4.5, this yields a T0 value of approximately 0.9 ns.

Crucial to the ability to optically pump the electron spin is an electron spin re-

laxation rate that is much slower than the trion relaxation rate, i.e. Γe ≪ Γt. For

Γe ≳ Γt, it is not possible to prepare the electron spin in a pure state as ∣2⟩ popula-
tion relaxes back to ∣1⟩ too quickly to deplete ∣1⟩ of its population. This dependence
of the initialization process on the relative values of Γt and Γe has consequences for

absorption studies performed with an external magnetic field. Figure 6.2 plots the

theoretical time-averaged absorption ⟨A⟩ as a function of laser frequency for fast

(black curve) and slow (red curve) spin relaxation rates compared to the trion relax-

ation rates. For the case where electron spin relaxation is slow, complete depletion of

the ∣1⟩ state occurs, resulting in the ∣1⟩ to ∣4⟩ transition becoming transparent. This

leads to a much weaker absorption signal compared to the fast spin relaxation case,

where depletion of the ∣1⟩ state does not occur.
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Figure 6.3: Characterization of the trion absorption range of QD #1 showing the optical pumping

and non-optical pumping regions at an external magnetic field of 0.66 T.

The two cases illustrated in Figure 6.2 may be observed experimentally by char-

acterizing the CW absorption range of the trion states of QD #1 in the presence of

an externally applied magnetic field. These scans are plotted in Figure 6.3 for small

voltage modulation at an external field of 0.66 T, showing both optical pumping and

non-optical pumping regions. Non-optical pumping regions occur towards both ends

of the absorption range due to the instability of the QD charge state that arises from

the increased tunneling of unpolarized electrons back and forth between the QD and

the n-doped GaAs layer at these voltages. This increased tunneling makes the spin

relaxation rate comparable to the trion relaxation rate, enabling the observation of

the “quartet pattern” in the trion absorption signal (Figure 6.2). To verify this,

modulated absorption studies were performed in this region as a function of magnetic

field strength to measure the separation between absorption peaks. These peak sepa-

rations correspond to the electron and heavy-hole Zeeman splittings and are plotted



79

3.02.01.00
B-Field (T)

0

40

20

60

80

En
e

rg
y 

(µ
e

V
)

∆e

∆h

h|g  | = .24

e|g  | = .42

h

h

Figure 6.4: Electron and heavy-hole Zeeman splittings as a function of magnetic field. The Zeeman

splittings are obtained by measuring absorption peak separations in the low-energy non-optical

pumping region, yielding electron and heavy-hole g-factor values of 0.42 and 0.24, respectively.

in Figure 6.4. Electron and heavy-hole g-factor magnitudes of 0.42 and 0.24, respec-

tively, are obtained from linear fits of the data, consistent with the values obtained

from pump-probe studies performed with an external magnetic field in Section 4.6.

Towards the center of the absorption range of Figure 6.3 the QD charge state

is stable, leading to a much slower spin relaxation rate. In this region, only one

feature is observed due to the near degeneracy of the two “cross” transitions in the

dot, leading to a bi-direction pumping that prevents complete depletion of either

spin state. This observed feature also indicates the dependence of the electron and

heavy-hole g-factors on the sample bias voltage, as these two transitions may be

distinguished in the non-optical pumping regions. The absorption signals associated

with the “vertical” transitions in the dot disappear in this region as their energies are

sufficiently separated to allow optical pumping. Increasing the magnetic field beyond

approximately 3 T leads to the complete disappearance of all absorption peaks in the

optical pumping region, demonstrating the ability to initialize the spin by pumping

any one of the trion transitions in the dot.
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Figure 6.5: Calculated ½11 values as a function of time for CW excitation of the ∣1⟩ to ∣4⟩ transition
(a) without and (b) with an incident train of optical pulses for a nonzero magnetic field. (c)

Calculated ½11 values as a function of time for CW excitation of the ∣1⟩ to ∣4⟩ transition in the ẑ

basis without an external field. The time averaged populations for all cases are indicated by the red

curves.

6.2 Read-Out of Electron Spin Manipulations Via the CW Field

In the previous section, modulated absorption measurements with an externally

applied magnetic field were able to distinguish between the case where the spin re-

laxation rate is comparable to or faster than the trion relaxation rate and the case

where the spin relaxation rate is much slower than the trion relaxation rate. This

is a consequence of the fact that modulated absorption signals provide a measure of

the time-averaged absorption of the CW field or, more specifically, the time-averaged

population in the ∣1⟩ state, ⟨½11⟩. We utilize this function of the CW field to evaluate

the operation of external manipulations of the electron spin in the optical pumping

region of the trion absorption.

To understand how the CW field can be used to detect the effect electron spin

manipulations, we theoretically consider the time averaged ∣1⟩ population in the op-
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tical pumping region with and without an incident train of optical pulses exciting the

dot. We take the repetition period of the pulses to be that of the laser (13.2 ns) and

take each pulse to drive half the population in the ∣2⟩ state back to the ∣1⟩ state. As
the laser repetition period is much longer than the characteristic timescale for optical

pumping, the electron spin is completely re-initialized between pulses.

Theoretical calculations of ½11 as a function of time are plotted for the two cases

in Figures 6.5(a) and (b) for a CW trion Rabi frequency slightly less than the trion

relaxation rate. Without the pulses, ½11 approaches a steady-state value of 2.5×10−7

within a few nanoseconds due to the interplay between trion relaxation and spin re-

laxation, the latter assumed to occur on the order of 10 ms based on the observations

of M. Kroutvar et al [115], yielding a time averaged population ⟨½11⟩ = 2.3 × 10−7.

With the pulses, ½11 population undergoes periodic excitation and decay cycles, dra-

matically increasing the time-averaged ½11 value by several orders of magnitude to

0.088. This increase in the value of ⟨½11⟩ is a direct consequence of the action of the

pulses and reflects the amount of ∣1⟩ population generated by each pulse. In this

capacity, the CW field functions as an “optical tripwire” as it provides a measure of

the population that reenters the ∣1⟩ state post initialization.

To determine whether the pulse-induced increase in ⟨½11⟩ is detectable, we compare

the results of Figure 6.5(b) with simulations of zero-field studies without any pulses.

Specifically, we calculate the time-averaged population ½11 in the z-basis for the case

where the ∣1⟩ to ∣4⟩ transition is driven by a CW field of the same power. The

time-evolution of ½11 is plotted in Figure 6.5(c), showing the system approaching the

steady state value of approximately 0.32 after the trion decoherence time, yielding a

time-averaged value of 0.33.

Based on these theoretical considerations and the signal strength of modulated

absorption studies at zero-field, we expect that absorption studies with a magnetic

field and an optical pulse train should yield detectable signals roughly an order of

magnitude weaker than those at zero-field. Using this method of read-out we first

pursue one-pulse studies comparing the operations of pulses of different polarizations

and detunings to verify the ability to coherently control the electron spin with detuned
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Figure 6.6: Illustrations of how ∣1⟩ population is generated post initialization by (a) a 45∘ polarized

pulse that drives ¼ rotations for both trion transitions and (b) a ¾̂+ polarized pulse that drives a ¼

rotation between the electron spin states.

circularly polarized pulses.

6.3 One-Pulse Studies: Polarization and Detuning Dependence

In one-pulse studies we investigate the operation of 45∘ polarized [1/
√
2(x̂ + ŷ)]

and circularly polarized [¾̂+ = 1/
√
2(x̂ + iŷ)] pulses both on-resonance with the

trion transitions and red-detuned from the trion transitions by 1 meV (roughly one

pulse width). As the CW read-out method is sensitive to the amount of population

generated in the ∣1⟩ state after each pulse, there are two optically driven processes that

will be detected by this method: the generation and decay of trion population and

the driving of two-photon Raman transitions. Both of these processes are illustrated

in Figures 6.6(a) and (b) and show how ∣1⟩ population is generated in each case.

Both the 45∘ and circularly polarized pulses are capable of generating trion pop-

ulation that subsequently decays to both spin ground states. Assuming equal decay

rates for all trion transitions, the amount of population generated in the ∣1⟩ state

after decay is the average of the populations generated in both trion states. For equal

trion excitation, this is simply the population generated in one of the trion states.

As a result, the detected modulated absorption signal in one pulse studies will show
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an oscillatory dependence on the amplitude of each pulse due to pulse-driven Rabi

oscillations between the initialized spin state and both trion states. As the amount

of trion population generated by the pulses can be reduced by detuning them from

the trion transitions, sufficient detuning leads to a negligible absorption signal.

As discussed in the previous Chapter, the two-photon Raman transitions that

rotate the spin about the optical axis can only be driven by circularly polarized pulses;

the destructive interference of the two two-photon quantum mechanical pathways

prevents the use of linearly polarized pulses to rotate the spin about the optical

axis. These two-photon spin rotations depend on the pulse amplitude but are not

suppressed by detuning the pulses from the trion transitions. Thus, for studies with

a single train of resonant linearly polarized pulses we expect to see an oscillation in

the absorption signal as a function of pulse amplitude due to trion Rabi oscillations,

while for the detuned case we expect to see a diminished absorption signal due to

the suppression of trion generation. For studies with circularly polarized pulses, we

expect the absorption signal to show a combination of trion and electron spin Rabi

oscillations on resonance due to the fact that each pulse can drive both processes,

while for the detuned case we expect an absorption signal due primarily to driven

two-photon spin rotations.

Figure 6.7 shows both the theoretically calculated and experimental measured

modulated absorption signals for one-pulse studies as a function of pulse amplitude

and VDC. Though not explicitly labeled, the highest values of the experimentally

measured modulated absorption signals are an order of magnitude weaker than signals

obtained in zero-field studies, as anticipated. Theoretical calculations are based on

numerical solutions of the density matrix equations for the four level system and

include a pulse amplitude dependent red-shift of the ∣1⟩ to ∣4⟩ transition energy as

a result of pulse-generated carriers in the sample WL. Both theory and experiment

show trion Rabi oscillations for linearly polarized excitation on resonance (upper

left panels), though the experimentally observed trion Rabi oscillations are strongly

damped. The cause of this damping is not well understood at present but may be the

result of off-resonant coupling of the electron to continuum states in the WL [214].
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Off-resonance (upper right panels), the trion population generated by the linearly

polarized pulses is suppressed, leading to a negligible modulated absorption signal

both in theory and experiment.
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Figure 6.7: Theoretically calculated and experimentally measured modulated absorption signals

as a function of pulse amplitude and VDC. The results for both theory and experiment show trion

Rabi oscillations for 45∘ polarized excitation on resonance (upper left panels), no absorption signal

for a detuned 45∘ polarized pulse (upper right panels), trion and electron spin Rabi oscillations for

¾̂+ polarized excitation on resonance (lower left panels) and approximately one complete spin Rabi

oscillation for a detuned ¾̂+ polarized pulse.

The modulated absorption signal in both theory and experiment for resonant cir-

cularly polarized pulses (lower left panels) shows a combination of trion and electron

spin Rabi oscillations, as expected, with maximum spin rotations occurring when trion

generation is minimized. As with linearly polarized excitation, detuning suppresses

the amount of trion population generated, resulting in a modulated absorption signal

due primarily to pulse driven spin Rabi oscillations (lower right panels), confirming

the theoretical results of the Section 5.1.3. The slight discrepancy in the oscillation

frequencies of the modulated absorption signals on and off resonance, though not well

understood at present, may be the result of birefringence in the layers of the sample

above the QDs. Such birefringence would lead to elliptically polarized pulses at the

QD, reducing the effective two-photon pulse area and thus decreasing the spin Rabi

oscillation frequency.
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Figure 6.8: Calculations of the time evolution of the ∣1⟩ population in two-pulse studies during

each 13.2 ns period at different values of the pulse delay. Results show that for pulse delays as high

as a few ns, the value of ½11 returns to zero before the following pump pulse, signifying complete

re-initialization of the electron spin between pulses.

Having confirmed the operation of detuned circularly polarized pulses on the elec-

tron spin, we now turn to two-pulse studies that enable the observation of the other

spin control mechanisms in the system.

6.4 Two-Pulse Studies: Spin Precession about the Magnetic Field

We consider the operation of two time-delayed circularly polarized pulses that are

detuned 500 ¹eV to the red of the trion transitions. For both pump and probe pulse

trains, the two-photon pulse area for each pulse is set to correspond to a ¼/2 rotation

of the spin about the ẑ axis. The pump pulse serves to rotate the initialized spin

vector to lie along +ŷ. Completely perpendicular to the external magnetic field, the

spin vector then precesses clock-wise about the x̂ axis at a rate determined by the

Zeeman splitting between the electron spin states. As a result of the precession, the

component of the electron spin vector along +x̂—which reflects the ∣1⟩ population—
immediately after the probe pulse will depend on the orientation of the spin vector
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immediately before its arrival.

In addition, while the electron spin precesses about the magnetic field the CW

field drives Rabi oscillations between the ∣1⟩ and ∣4⟩ states at a rate determined by

the CW trion Rabi frequency, imparting a geometric phase to the ∣1⟩ state for each

complete trion Rabi oscillation as discussed in Section 5.3. Thus, to isolate the effect

of spin precession, we first limit the pulse delay range to values much shorter than the

CW trion Rabi period. This also ensures that the CW field completely re-initializes

the electron spin between pulse pairs (Figure 6.8), permitting the standard modulated

absorption approach.
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Figure 6.9: Theoretical and experimentally measured modulated absorption signals as a function

of pulse delay and magnetic field. The oscillatory behavior of the signal is clearly exhibited, with

the oscillation frequency increasing as the magnetic field is increased in strength.

Figure 6.9 plots the calculated and experimentally measured modulated absorp-

tion signals as a function of pulse delay and external magnetic field, clearly exhibiting

the oscillatory dependence of the modulated absorption signal on td in both theory

and experiment. From these scans we extract an electron g-factor magnitude of ∼ 0.4,

consistent both with the CW studies presented in Section 6.1 and the pump-probe

studies of Section 4.6. A single modulated absorption scan as a function of pulse

delay is plotted in Figure 6.10, indicating the orientation of the electron spin vector

immediately before the probe pulse at selected delay points.

The sequence of operations Up(¼/2)UB(Á)Up(¼/2) executed by the pulses and
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Figure 6.10: Modulated absorption scan and oscillatory fit (red curve) as a function of pulse delay

for an external magnetic field of 5.5 T. The orientation of the electron spin vector immediately before

the probe pulse is indicated at selected delay values.

magnetic field in two-pulse studies for short pulse delays can be used to construct

different gate operations depending on the precession angle Á. For Á = 2¼n (∣Ψe
y⟩ =

∣y+⟩) UB reduces to the identity matrix, resulting in an X gate while for Á = ¼+2¼n

(∣Ψe
y⟩ = ∣y−⟩) the entire sequence reduces to the identity matrix. The Hadamard

gate may be constructed using precession angles of either ¼
2
+ 2¼n (∣Ψe

x⟩ = ∣x+⟩) or
3¼
2
+ 2¼n (∣Ψe

x⟩ = ∣x−⟩). In addition, rotations about the ŷ axis by an angle Á may

be achieved by switching the helicity of the first or the second pulse.

6.5 Two-Pulse Studies: Geometric Phases and Spin Precession Modula-

tion

Two-pulse studies with higher CW powers and longer pulse delay ranges enable

the observation of the CW field operation between pulses. After the operation of the

pump pulse, the CW field begins driving Rabi oscillations between the ∣1⟩ and ∣4⟩
states while the electron spin precesses about the magnetic field. The evolution of

the system between the pump pulse and the first ¼ rotation of the trion transition

driven by the CW field is illustrated in Figure 6.11 for a precession frequency much

greater than the trion Rabi frequency. During the early stages of the CW-driven

trion Rabi oscillation, the electron spin precesses in the ŷ-ẑ plane. As more of the ∣1⟩
population is driven to the ∣4⟩ state, however, an increasingly large heavy-hole spin

vector is generated along +x̂ and the electron spin vector begins to trace out a cone
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whose tip and base lie, respectively, at the origin and beneath the ŷ-ẑ plane. The

height of this cone continues to grow while its base continues to shrink in diameter

until all the ∣1⟩ population is driven to the ∣4⟩ state, at which point the diameter of

the precession cone base becomes zero and the electron and heavy-hole spin vectors

are oppositely aligned along the x̂ axis. Here, the electron spin does not precess since

it is in a stationary state. Beyond this point, the CW field drives population back

to the ∣1⟩ state, repeating the process in reverse until the electron spin is once again

precessing in the ŷ-ẑ plane.

As the CW field is resonant with the ∣1⟩ to ∣4⟩ transition, the net effect of the

geometric phase imparted with each complete trion Rabi oscillation can be represented

in terms of the unitary transformation

Ucw =

⎡
⎣ −1 0

0 1

⎤
⎦ (6.1)

corresponding to a ¼ rotation of the spin about the x̂ axis that manifests as a net

¼ phase shift in the spin precession signal. In actuality, the phase shift in the spin

precession signal occurs at the points where the ∣1⟩ population is completely depleted

by the CW field, but because of the trion population the effect of the geometric phase

is only unitary for each complete trion Rabi oscillation. In modulated absorption

studies as a function of pulse delay, then, we expect to see a spin precession signal

modulated at the trion Rabi frequency, with ¼ phase shifts in the spin precession

signal occurring at times when the ∣1⟩ population has been completely depleted by

the CW field.

Calculated ∣1⟩ populations immediately after the second pulse and experimentally

measured modulated absorption signals as a function of pulse delay at different CW

powers are shown in Figure 6.12. The modulation of the spin precession signal is

clearly evident both in theory and in experiment, with the frequency of the modulation

envelope increasing with increasing CW power as expected. The ¼ phase shifts in the

spin precession signal arising from the imparted geometric phases are also evident

when comparing the 5 mW and 10 mW scans with the .2 mW scan. Near zero-delay

(first green dashed line) the scans are all in phase. Around 200 ps (second green
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Figure 6.11: Diagrams illustrating the time evolution of (a) level occupations in the x̂ basis, (b)

the electron spin vector and (c) the heavy-hole spin vector between the pump pulse and the first

CW-driven ¼ rotation of the ∣1⟩ to ∣4⟩ transition.

dashed line) the 5 mW and 10 mW scans have each passed a ∣1⟩ depletion point,

resulting in a ¼ phase shift of those two precession signals with respect to the .2 mW

precession signal, which has not approached a depletion point. Near 350 ps (third

green dashed line), the 5 mW and 10 mW scans have passed through an even number

of ∣1⟩ depletion points, bringing their spin precession signals back in phase with the .2

mW spin precession signal, which has still not passed through any depletion points.

We note that for a trion Rabi oscillation period equal to an integer number of spin

precession periods, the combination of pulses and geometric phases may be used to

construct a number of optically driven single qubit gates. The red circles in Fig. 6.12

indicate cases where this condition is approximately met. At these points, the total

operation sequence constitutes an optically driven Z or Y gate depending on whether

the second ¼/2 pulse is ¾̂+ or ¾̂− polarized.
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Figure 6.12: (a) Theoretically calculated values of ½11 immediately after the probe pulse for differ-

ent CW powers and (b) the corresponding modulated absorption scans at those powers. The green

dashed lines serve as guides to the eye in comparing the precession signals at different CW powers.

The red circles indicate conditions where the CW-driven trion Rabi period is approximately equal

to an integer number of electron spin precession periods, enabling the construction of purely optical

spin gates.

One peculiarity with the data of Figure 6.12 is that the spin precession signal until

the first depletion point is weaker and less modulated than at later delays. The cause

of this peculiarity is not clear and does not appear to be the result of systematic errors

in the experimental method, e.g. delay stage misalignment or drift, etc. Though a

reduced modulation of the first depletion point would occur as a result of detuning

the CW field from the ∣1⟩ to ∣4⟩ transition, this seems an unlikely explanation as such

a detuning would also change the imparted geometric phase, resulting in a reduced

phase shift in the spin precession signal relative to lower power scans. Nevertheless,

the overall agreement between theory and experiment in Figure 6.12 demonstrates
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the ability to utilize the effect of geometric phases generated by cyclic excitations in

the QD system to manipulate the electron spin.

6.6 Chapter Summary

In this Chapter we have discussed experiments demonstrating the coherent control

of an initialized electron spin. Preparation of the electron spin in a pure state was

accomplished by tuning a narrow-bandwidth CW field to the ∣1⟩ to ∣4⟩ transition in

the dot, thereby optically pumping all spin population to the ∣2⟩ state. Use of the

same CW field to detect spin manipulations was also discussed, showing that this

method of readout is sensitive to the ∣1⟩ population generated by each pulse in a

pulse train. This method of read-out was applied to one-pulse studies to verify the

polarization dependence of the two-photon Raman excitations that rotate the spin

about the optical axis, showing coherent control of the electron spin with detuned

circularly polarized pulses. Pump-probe studies with two two-photon ¼/2 pulses were

then presented, first demonstrating the ability to detect the effect of spin precession.

The operation of the CW field on the electron spin between the pulses was then shown

to manifest in part as a modulation of the spin precession signal. The geometric

phases generated by cyclic evolutions of the system resulting from CW-driven trion

Rabi oscillations were observed as ¼ phase shifts in the electron spin precession signal,

demonstrating the ability to control the electron spin via these geometric phases.



CHAPTER 7

Proposed Future Experiments

The previous Chapters have demonstrated the coherent optical spectroscopy of

a single, negatively charged InAs QD and the coherent optical control of the QD

confined electron spin. The ability to coherently probe and control the spin states

of a single QD confined charge is a foundational prerequisite for executing quantum

algorithms in scalable architectures based on the spin states of such charges. The

impetus now is for the advancement of both technology and technique, i.e. effective

and efficient methods of performing multi-qubit operations and entangling multiple

spin qubits, though most of the onus currently lies with the advancement of semicon-

ductor device fabrication to allow for these methods to be developed [215]. To this

end, a number of approaches have strived towards the growth of laterally [216] and

vertically [217] coupled dot structures. In addition, devices combining such structures

with photonic crystal cavities [218] or microtoroidal resonators [219] for the develop-

ment of quantum networks akin to those proposed in Reference [42] are also being

developed and may soon be realized.

Until the development of such structures, there still remain a number of experi-

mental studies in the singly charged QD system that are important from a quantum

computing perspective. In this Chapter, two of these experimental studies are dis-

cussed: the density matrix tomography (DMT) of a single electron spin confined in

a QD and the generation of geometric phases in a singly charged QD with optical

pulses. The motivation for each proposed experiment is presented, as well as the

experimental requirements and challenges.

92
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7.1 Density Matrix Tomography (DMT) of a QD Confined Electron Spin

DMT is the experimental procedure by which the elements of a quantum system’s

density matrix are determined under a particular set of conditions. This procedure

is important for quantum computing as it allows for the evaluation of quantum gate

fidelities which, in conjunction with characterized measurement fidelities, would be

used to determine the number of repeated computations or redundantly encoded

qubits required to obtain a reliable measurement from a particular computing opera-

tion [3]. In this Section, we first discuss how the combination of a detuned circularly

polarized pulse and spin precession may be used to characterize a given system’s

density matrix for optical tripwire readout. A possible scheme for read-out signal

calibration is then presented, by which numerical values for the density matrix ele-

ments may be determined. Finally, an example procedure evaluating the operation

of a Hadamard gate is discussed.

7.1.1 DMT Procedure: Theory

As in the previous two Chapters, we consider the case where a DC magnetic field

is applied in the Voigt configuration. Using the standard labeling scheme, we seek

the values of the density matrix elements for a general electron spin density matrix

½el =

⎡
⎣ ½11 ½12

½21 ½22

⎤
⎦ (7.1)

specified at some time t = t0. To do this, we once again utilize the formalism of

the spin Bloch sphere in {u, v, w} space for the case of excitation with a detuned

circularly polarized pulse (Section 5.1.2) with

B(t = t0) =

⎡
⎢⎢⎢⎣

Bu(t0) = Bu,0

Bv(t0) = Bv,0

Bw(t0) = Bw,0

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

2Re[½12]

−2Im[½12]

½22 − ½11

⎤
⎥⎥⎥⎦ (7.2)
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Ω =

⎡
⎢⎢⎢⎣

Ωu

Ωv

Ωw

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

−Re
[
ie−iÁ

] Ω2
p

2±p
sech2

( t−tp
¿

)

0

Δe

⎤
⎥⎥⎥⎦ (7.3)

dB/dt = Ω×B (7.4)

where tp > t0 is the arrival time of the pulse and we note that the tildes have

been removed from the density matrix elements since the Schrödinger picture and

FIP (Section 5.1.1) probability amplitudes for the electron spin states are equivalent.

Equation 7.4 yields the system of equations

Ḃu = −ΔeBv (7.5)

Ḃv = ΔeBu +
Ω2

p

2±p
sech2

(
t− tp
¿

)
Bw (7.6)

Ḃw = −Ω2
p

2±p
sech2

(
t− tp
¿

)
Bv (7.7)

which can be solved using the same approach employed in Sections 5.1.3 and 5.2, i.e.

by treating the pulse and magnetic field operations separately (a valid approach as

long as the pulse duration is much shorter than the spin precession period). Solutions

to Equations 7.5-7.7 enable the expression of each type of operation in terms of a

unitary rotation matrix, just as in Chapter 5:

pulse: Rp(µ) =

⎡
⎢⎢⎢⎣

1 0 0

0 cos(µ) sin(µ)

0 − sin(µ) cos(µ)

⎤
⎥⎥⎥⎦ , µ =

Ω2
p¿

±p
(7.8)

B-field: RB(#) =

⎡
⎢⎢⎢⎣

cos(#) − sin(#) 0

sin(#) cos(#) 0

0 0 1

⎤
⎥⎥⎥⎦ , # = Δe(t− t0). (7.9)

where the pulse and the magnetic field each execute, respectively, instantaneous ro-

tations about û and time-dependent rotations about ŵ of the spin Bloch vector. We

note that the rotation matrices of Equations 7.8 and 7.9 alternatively could have

been determined by phenomenologically re-expressing each {x, y, z} space operation
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in terms of the corresponding {u, v, w} space operation. The brute force approach

employed here was pursued for rigorousness.

To determine the values of the density matrix elements, we utilize the fact that

the spin Bloch vector precesses about the ŵ axis of the Bloch sphere and excite the

system with the detuned circularly polarized pulse at different moments during the

precession. This effectively rotates different components of the spin Bloch vector to

lie along the ŵ axis, which serves as the measurement axis in experiments utilizing

optical tripwire read-out as this method effectively measures the component of the

spin Bloch vector projected along ŵ. For the same experimental configuration as

in the previous Chapter, optical tripwire read-out provides a signal proportional to

the population in the ∣1⟩ state immediately after the pulse. We thus consider the

form of the ∣1⟩ population ½′11 after the operation of both the magnetic field and the

detuned circularly polarized pulse, in that order. In other words, we consider the

transformation

B′ = Rp(µ)RB(#)B(t = t0) (7.10)
⎡
⎢⎢⎢⎣

B′
u

B′
v

B′
w

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

Bu,0 cos(#)−Bv,0 sin(#)

Bu,0 cos(µ) sin(#) +Bv,0 cos(µ) cos(#) +Bw,0 sin(µ)

−Bu,0 sin(µ) sin(#)−Bv,0 sin(µ) cos(#) + Bw,0 cos(µ)

⎤
⎥⎥⎥⎦ (7.11)

and assume that all population remains in the spin ground states throughout the

transformation. The ∣1⟩ population after the pulse then has the form

½′11 =
1

2
(1−B′

w)

=
1

2
[1 +Bu,0 sin(µ) sin(#) +Bv,0 sin(µ) cos(#)−Bw,0 cos(µ)] .

(7.12)

From Equation 7.12 we see that different components of the spin Bloch vector at

t = t0 can be isolated in the read-out signal by proper selection of the two-photon pulse

area and the spin precession angle. Trivially, the diagonal density matrix elements

may be determined without using either spin precession or an optical pulse, as for

µ = 0 and # = 0, ½′11 = ½11. The off-diagonal matrix elements of ½el may be determined
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Figure 7.1: ∣1⟩ population immediately after the operation of a µ = ¼/2 pulse at times correspond-

ing to a ¼/2 and a ¼ precession of the electron spin.

with the use of a µ = ¼/2 pulse, yielding a ∣1⟩ population of the form

½′11 =

⎧
⎨
⎩

1
2
[1 + 2Re[½12]] , # = ¼/2 + 2n¼

1
2
[1 + 2Im[½12]] , # = ¼ + 2n¼

(7.13)

Equation 7.13 shows how proper selection of the precession angle allows for the iso-

lation of either the real or the imaginary part of ½12, as illustrated in Figure 7.1. The

value of ½21 is then determined simply by taking the complex conjugate of ½12. The

general DMT procedure for a density matrix given at t = t0 is then

1. Determine ½11 through direct optical tripwire read-out.

2. Determine ½22 either by utilizing population conservation or by performing op-

tical tripwire read-out on state ∣2⟩.

3. Determine the real part of ½12 by reading out the result of a two-photon ¼/2

pulse applied at Δe(t− t0) = ¼/2 (orange dashed box in Figure 7.1).

4. Determine the imaginary part of ½12 by reading out the result of a two-photon

¼/2 pulse applied at Δe(t− t0) = ¼ (light blue dashed box in Figure 7.1).

5. Determine ½21 from the complex conjugate of ½12.

The experimental procedure above allows for the complete determination of the

electron spin density matrix at any particular time t0 with the use of ¼/2 pulses
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applied at times t = t0 +
¼

2Δe
and t0 +

¼
Δe

. With the procedure determined, we now

discuss how experimentally measured optical tripwire signals may be calibrated to

assign numerical values to the density matrix elements.

7.1.2 Experimental Calibration

To reliably extract numbers from DMT experiments, measured signals must be

accurately calibrated. This generally involves correlating measured signal levels with

specific spin operations. For the case of spin precession, such assignments may be

made in a straightforward manner, as the two pulse studies presented in Section 6.4

allow simple determination of the precession angle as a function of time.

For the two-photon spin rotation performed by the detuned circularly polarized

pulse, power dependent one-pulse studies with optical tripwire read-out (Section 6.3)

may be used to determine the specific pulse power corresponding to a ¼ rotation of

the spin. To assign population values to a particular signal level, studies may then be

performed with two ¼ pulses separated in delay by a complete 2¼ spin precession to

determine the actual amount of population rotated by each ¼ pulse. The maximum

signal level in such studies would provide a measure of the amount of population

left undriven by each ¼ pulse when compared to the maximum signal level in studies

performed with a single ¼ pulse. The situation is illustrated in Figure 7.2, depicting

absorption measurements with one and two ¼ pulses that yield maximum signals of

® and ¯, respectively. The actual amount of population rotated by a ¼ pulse, ½¼, is

given by the expression

½¼ = 1− ¯

2®
(7.14)

and can be used to assign population values to particular signal levels. For instance,

if a ¼/2 pulse (based on one-pulse studies) leads to a maximum modulated absorption

signal ·, then the actual population rotated by the ¼/2 pulse is

½¼/2 =
·

®
½¼ (7.15)

and so forth. Using this calibration scheme, optical tripwire measurements may be
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assigned population values from which the density matrix elements may be deter-

mined.
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Figure 7.2: Example modulated absorption scans in experiments with one and two two-photon ¼

pulses, with maximum signals ® and ¯, respectively.

7.1.3 DMT Procedure for the Hadamard Gate

Here we provide a possible experimental procedure for performing DMT of the

Hadamard gate

H =
1√
2

⎡
⎣ 1 1

1 −1

⎤
⎦ (7.16)

which, from the fourth row of Table 5.1, corresponds to the sequence of rotations

Rℎad = Rp(¼/2)RB(¼/2)Rp(¼/2). (7.17)

The density matrix resulting from the operation of the Hadamard gate will depend

on the orientation of the electron spin immediately before the operation. For initial

spin orientations along ±x̂, the resultant density matrix has the form

½el =

⎧
⎨
⎩

⎡
⎣ 1/2 1/2

1/2 1/2

⎤
⎦ , ∣Ψe

x(t0)⟩ = ∣x+⟩
⎡
⎣ 1/2 −1/2

−1/2 1/2

⎤
⎦ , ∣Ψe

x(t0)⟩ = ∣x−⟩
, (7.18)

thus, to truly verify Hadamard gate operation, we perform density matrix tomography

for each initial spin orientation. We first treat the case where the CW field initializes
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all population to the ∣2⟩ state. Optical tripwire read-out for the sequence given in

Equation 7.17 leads to a signal »1, from which we extract

½11 =
»1
®
½¼, ½22 = 1− ½11 (7.19)

using the same calibration constants provided previously. Signal values »2 and »3 are

then obtained in performing steps 3 and 4 of the DMT procedure, yielding

Á =
¼

2
: Re[½12] =

1

2

[
2
»2
®
½¼ − 1

]
(7.20)

Á = ¼ : Im[½12] =
1

2

[
2
»3
®
½¼ − 1

]
. (7.21)

The total density matrix in this case may then be constructed as

½el =

⎡
⎣

»1
®
½¼

1
2

[
2 »2

®
½¼ − 1

]
+ i

2

[
2 »3

®
½¼ − 1

]

1
2

[
2 »2

®
½¼ − 1

]− i
2

[
2 »3

®
½¼ − 1

]
1− »1

®
½¼

⎤
⎦ . (7.22)

In repeating this process for the case where the CW field initializes the electron

spin to the ∣1⟩ state, the optical tripwire in this case measures the ∣2⟩ population,

resulting in a minus sign between the bracketed terms of Equation 7.13. For the

measured signals ³1, ³2 and ³3 (»1, »2 and »3 analogues) the total density matrix is

½el =

⎡
⎣ 1− ³1

®
½¼

1
2

[
1− 2 ³2

®
½¼
]
+ i

2

[
1− 2 ³3

®
½¼
]

1
2

[
1− 2 ³2

®
½¼
]− i

2

[
1− 2 ³3

®
½¼
]

³1
®
½¼

⎤
⎦ . (7.23)

The differences between the two constructed density matrices will reflect the critical

sign difference between the elements in the second column of the Hadamard operation

(Equation 7.16), thereby verifying its operation.

The general procedure discussed here may be applied to any single qubit gate

or sequence of gates and would prove an indispensable technique for evaluating the

fidelities of such operations. This procedure could be improved by gating the CW

field using electro-optic modulators so that it only operates for initialization and read-

out. Such modulation would eliminate any reduction of measured gate fidelities due to

trion Rabi oscillations driven by the CW field during the course of operations. Further

improvement would be realized with the use of optical cycling read-out [53, 213] to

provide improved signal to noise.
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Figure 7.3: Energy level diagram showing the tuning of the x̂ polarized pulse used to generate the

geometric phases for spin control.

7.2 Pulse-Generated Geometric Phases for Spin Rotation

The previous two Chapters demonstrated in both theory and experiment that the

generation of geometric phases by optically driven cyclic evolutions in the QD can

be used to rotate the electron spin about an axis orthogonal to the optical axis. The

cyclic evolutions in this case were driven by the same CW field used to initialize the

spin. This method of driving the cyclic evolutions is not optimal as the rotations

occur continually and require high powers to obtain fast operation times. Ideally,

the geometric phases used for spin rotation would be generated by separate pulses,

enabling operations at particular times during the course of the computation. Here,

we propose experiments with a linearly polarized optical pulse to perform the geomet-

ric phase induced spin rotation, following the proposed approach of Reference [133].

The unitary transformation matrix associated with the operation of such a pulse is

first derived, followed by the discussion of a possible experimental procedure for the

realization of these rotations.

7.2.1 Derivation of the Unitary Transformation Matrix

For experiments, we specifically consider excitation with an optical pulse polarized
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along x̂ and incident along the optical axis of the form

Ep(t) = x̂
1

2
Epsech

(
t

¿

)[
e−i!pt + c.c.

]
. (7.24)

Since we are interested in determining the unitary transformation associated with

the spin rotation, we solve for the probability amplitudes of the system using the

same approach as in Chapter 5. In this case, the linearly polarized pulse leads to the

nonzero dipole interaction matrix elements

V14 = −ℏΩp

2
sech

(
t

¿

)[
e−i!pt + c.c.

]
= V41 = V23 = V32. (7.25)

Immediately, we note that for an optical pulse bandwidth comparable to the electron

and heavy-hole Zeeman splittings, the driving of both transitions in the dot must

be considered. We recall that the sign of the geometric phase imparted by a CW

field depends on the sign of the detuning from the optically driven transition. Thus,

the pulse is centered in frequency between the two transition energies, i.e. !p is set

equal to !0 in Figure 7.3. In this case, the optical pulse imparts equal and opposite

geometric phases to the probability amplitudes of the electron spin states as the

pulse detunings from the x̂ polarized transitions have opposite signs. Under these

conditions, the equations of motion in the interaction picture [Ci(t) = C̃i(t)e
−i!it] are

˙̃C1(t) =
iΩp

2
e−iΔtsech(¾t)C̃4(t) (7.26)

˙̃C2(t) =
iΩp

2
eiΔtsech(¾t)C̃3(t) (7.27)

˙̃C3(t) =
iΩp

2
e−iΔtsech(¾t)C̃2(t) (7.28)

˙̃C4(t) =
iΩp

2
eiΔtsech(¾t)C̃1(t) (7.29)

with

Δ =
1

2
(Δe +Δℎ), ¾ =

1

¿
. (7.30)

Since we are treating the two optically driven transitions as independent during

the operation of the pulse, all probably amplitudes may be determined simply by

solving for the probably amplitudes of just one of the transitions, as the equations of
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motion for the two transitions are equivalent. Here, we consider the ∣1⟩ to ∣4⟩ transi-
tion. Following the same approach as in References [220] and [132], we differentiate

Equation 7.26 and use Equation 7.29 along with the substitution f = Ωpsech(¾t) to

obtain the differential equation

¨̃C1(t) +

[
iΔ− ḟ

f

]
˙̃C1(t) + f 2C̃1 = 0. (7.31)

Performing the change of variable x = 1
2
[tanh(¾t) + 1] leads to the equation

x(1− x)C̃ ′′
1 (x) +

[
1

2

(
1 +

iΔ

¾

)
− x

]
C̃ ′

1(x) +
Ω2

p

¾2
C̃1(x) = 0 (7.32)

which is in the standard form of the hypergeometric equation [221]. The general

solution to Equation 7.32 may be written in terms of hypergeometric functions F as

C̃1(x) = A1F (a,−a, c; x) + A2x
c∗F (a+ c∗,−a+ c∗, 1 + c∗;x) (7.33)

where a = Ωp

¾
, c = 1

2

(
1 + iΔ

¾

)
and the Ai are constants determined by the initial

conditions. Use of initial conditions results in the unitary transformation matrix

associated with the ∣1⟩ to ∣4⟩ transition of the form

U∣1⟩↔∣4⟩ =

⎡
⎣ F (a,−a, c; x) 2ia

c∗ x
c∗F (c∗ − a, c∗ + a, c∗ + 1; x)

2ia
c
xcF (c− a, c+ a, c+ 1; x) F (a,−a, c∗;x)

⎤
⎦ ,

(7.34)

and the corresponding matrix for the ∣2⟩ to ∣3⟩ transition of the form

U∣2⟩↔∣3⟩ =

⎡
⎣ F (a,−a, c∗; x) 2ia

c
xcF (c− a, c+ a, c+ 1; x)

2ia
c∗ x

c∗F (c∗ − a, c∗ + a, c∗ + 1; x) F (a,−a, c; x)

⎤
⎦ .

(7.35)

We are interested in pulses that leave no population in the trion states, a condition

that may be met with Ωp = n¾ (n integer) for t → ∞ (x → 1). For n = 1, the

unitary transformation matrix for the electron spin states then has the form

Un=1 =

⎡
⎣ 1− 1

c
0

0 1− 1
c∗

⎤
⎦ =

⎡
⎣ eiÀ/2 0

0 e−iÀ/2

⎤
⎦ , À = 4 tan−1

( ¾

Δ

)
(7.36)
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Figure 7.4: (a) Example modulated absorption scan (large modulation) as a function of CW field

frequency showing the frequency corresponding to !0. (b) Re-plot of one of the panels of Figure 6.7

corresponding to the theoretical optical tripwire signal in studies with a resonant linearly polarized

pulse. Values of Ep corresponding to the n = 1 (red dashed line) and n = 2 (brown dashed line)

conditions are indicated.

where we indeed see that the unitary transformation has the form of a rotation about

the x̂ axis, the angle depending on the ratio between the pulse bandwidth and the

sum of the electron and heavy-hole Zeeman splittings. Rotation angles between 0 to

2¼ may be achieved, with increasing rotation angles requiring either broader pulse

bandwidths for a particular magnetic field strength or smaller magnetic fields for a

fixed pulse bandwidth. In addition, it is worth noting that this rotation angle is for

the n = 1 case and differs from the rotation angles obtained for other values of n.

For instance, the n = 2 the unitary transformation matrix is

Un=2 =

⎡
⎣ eiº/2 0

0 e−iº/2

⎤
⎦ , º = 4 tan−1

(
4Δ¾

Δ2 − 3¾2

)
, (7.37)

which exhibits a more complicated dependence on the system parameters.

7.2.2 Experimental Procedure

Experimental demonstrations of pulse-generated geometric phases would benefit

from the ability to control both the strength of the external magnetic field and the

pulse width. The former capability is standard with most magnetocryostats while the

latter generally requires the use of pulse shaping techniques. Assuming access to both,
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the experimental procedure begins with a selection of a desired rotation angle. Based

on this angle, a particular combination of magnetic field strength (given characterized

electron and heavy-hole Zeeman splittings) and pulse width is then chosen where the

latter may be verified with the autocorrelator or with the spectrometer and CCD.

With these two parameters determined, the trion absorption range at the chosen

magnetic field strength is then characterized. Optical tripwire read-out as a function

of CW field frequency is then performed in the center of the optical pumping region

with a pulse that drives ¼ rotations in all four trion transitions. Because of the

action of the pulse, the measured signal will show four peaks as the laser frequency is

scanned, enabling the determination of !0 [Figure 7.3(a)]. The x̂ polarized rotation

pulse spectrum is then centered on !0 by overlapping the pulse and the CW field (set

to !0) on the spectrometer CCD. To determine the rotation pulse Rabi frequency

Ωp, another optical tripwire experiment is performed, this time using the rotation

pulse and keeping the CW field tuned to either the ∣1⟩ to ∣4⟩ transition or the ∣2⟩
to ∣3⟩ transition. Measurements are taken as a function of VDC and rotation pulse

amplitude [Figure 7.3(b)]. Amplitude values yielding a minimum absorption signal

correspond to cases where Ωp = n¾ (n = 0, 1, ...). The pulse power corresponding to

the n = 1 minimum would be selected.

Once the pulse amplitude is properly set, the operation of the rotation pulse may

be demonstrated by performing studies with optical tripwire read-out and two time-

delayed two-photon ¼/2 pulses. Figure 7.5 shows theoretical calculations of the ∣1⟩
state population immediately after the second ¼/2 pulse in studies without (top)

and with (bottom) the x̂ polarized rotation pulse. These calculations are based on

numerical solutions to the density matrix equations for ideal two-photon ¼/2 pulses

and a CW field that is turned off between initialization and read-out. Results for

a 1 mW rotation pulse approximately 15 ps in width show a ∼ ¼ rotation of the

spin about the x̂ axis. These calculations, though somewhat simplified, demonstrate

the feasibility of performing fast spin rotations about x̂ via the geometric phases

generated by linearly polarized optical pulses.

Pulse-driven spin rotations about x̂ would enable the construction of a purely
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Figure 7.5: Theoretically calculated population in ∣1⟩ immediately after the second ¼/2 pulse in

two-pulse studies with a CW field that is turned off between initialization and read-out. Scans are

shown both (top) without and (bottom) with a 1 mW x̂ polarized rotation pulse about 15 ps in

width applied at 75 ps. The rotation pulse results in a ∼ ¼ rotation of the spin about the x̂ axis.

optical set of universal spin operations when combined with the ẑ axis rotations

driven by detuned circularly polarized pulses. This could potentially allow for spin

qubit gates that are fast even in the absence of high external magnetic fields and are

more easily tailored to individual spin qubits in multi-dot architectures. In addition,

rotation pulses could be used instead of the magnetic field in the DMT procedure

discussed in the previous section, providing a purely optical means of obtaining the

electron spin density matrix elements.

7.3 Chapter Summary

Two experiments were proposed to build upon the experimental results presented

in this thesis. First, an experimental procedure for DMT was discussed, demonstrat-

ing that the diagonal and off-diagonal elements of the density matrix for the electron
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spin may be projected onto the measurement axis using a combination of spin preces-

sion and a two-photon ¼/2 pulse. A possible calibration method was also presented,

enabling the extraction of populations measured by optical tripwire read-out to assign

numerical values to the density matrix elements.

The use of a linearly polarized optical pulse to generate geometric phases for spin

rotation was then discussed. The unitary transformation matrix associated with the

operation of a linearly-polarized rotation pulse was first derived. An experimental

procedure for the demonstration of pulse-driven x̂ rotations was then presented, as

well as the process by which experimental parameters are selected. Theoretical calcu-

lations of the measured ∣1⟩ population were presented for experiments with a rotation

pulse and two time-delayed two-photon ¼/2 pulses, showing that with certain exper-

imental capabilities the parameters required for pulse-driven x̂ rotations should be

well within reach.



CHAPTER 8

Thesis Summary

Chapter 1 first presented a brief historical background of the field of quantum

computation, highlighting the theoretical conjectures and discoveries by Feynamn,

Deustch, Jozsa, DiVincenzo, Grover and others that served to ignite the vigorous

and ongoing research effort towards the realization of a quantum computer. The fun-

damental requirements for a practical quantum computer, the so-called DiVincenzo

criteria, were then discussed. These criteria concern the properties of the physical

system under consideration both at the single qubit level and as a whole, as well as

the means by which single- and multi-qubit operations are performed. A number

of candidate physical systems for quantum computing were then discussed, includ-

ing trapped ions, nuclear spins in molecules, electron and nuclear spins in diamond,

electron and nuclear spins of phosphorous donors in silicon, superconducting circuits

and quantum dots. Progress towards satisfying the DiVincenzo criteria for optical

approaches to controlling QD confined spins was then discussed, highlighting the

potential for ultrafast quantum gate operations.

The properties of the sample and the type of dot studied in experiments were

presented in Chapter 2, starting with a general discussion of the different types of self-

assembled QDs and their various applications. The growth procedure was discussed

in detail, showing the arrangement of the sample layers as well as the aperture pattern

on the aluminum shadow mask that enables single-dot studies. The energy levels of

a single InAs QD charged with an electron were then presented with and without an

external DC magnetic field applied perpendicular to the sample growth axis, along
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with the energy level numbering scheme used to simplify mathematical expressions

for the probability amplitudes and density matrix elements given throughout this

thesis.

In Chapter 3, theoretical expressions for the lock-in detected interference measured

by a photodetector between a picosecond pulse resonant with an optical transition

in the QD and the field radiated by the pulse-generated polarization in the QD were

derived. These expressions showed that the detected signal depends on the density

matrix elements of the optically driven transition immediately prior to excitation

as well as the pulse area, providing a means of observing transient phenomena in

a single QD with the use of a preceding pump pulse. This concept was applied to

pump-probe studies with and without the external DC magnetic field, revealing the

transient phenomena that may be observed in each type of study. It was shown that

in the absence of the magnetic field, trion excitation and decay may be observed

while in studies with the magnetic field, electron and heavy-hole spin precession may

be observed in addition to trion excitation and decay. In the latter case, the theory

also revealed that values for the inhomogeneously broadened electron and heavy-hole

spin coherence times, T e∗
2 and T ℎ∗

2 , may in principle be determined from pump-probe

studies.

Chapter 4 presented the experimental results from pulsed optical studies of a single

InAs QD, first discussing the experimental setup and equipment used for all studies

presented in this thesis. The characterization procedure for a singly charged QD

was also discussed, detailing how PL spectroscopy and DC Stark-shift modulation

absorption spectroscopy were used to determine the optical properties of the dot,

viz the absorption range in energy and voltage. For studies with a single train of

optical pulses resonant with the optical transitions in the dot at zero magnetic field,

results showed the ability not only to read-out the QD with optical pulses but also

to coherently control the optical transitions in the QD. Such coherent control was

demonstrated by an oscillation in the lock-in detected signal as a function of pulse

power, indicating a complete Rabi oscillation between the electron and trion states.

This read-out signal was then used in pump-probe studies without a magnetic field
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to observe trion excitation and decay and to verify the Rabi oscillations observed

in one-pulse studies. The two complete Rabi oscillations observed in pump-probe

studies also showed additional structures in the peaks of the oscillations that may

indicate off-resonant driving of the trion state of a nearby dot. Delay scans taken

with the magnetic field showed two-frequency oscillations as a function of pulse delay

due to the precession of both electron and heavy-hole spins. These scans enabled the

extraction of electron and heavy-hole g-factor magnitudes but prevented the reliable

determination of their coherence times due to the limited range of pump-probe delays.

Having demonstrated the ability to coherently control and probe the optical tran-

sitions in a singly charged InAs QD, efforts then focused on optically controlling

the spin states of the QD confined electron. Three mechanisms of spin control were

described theoretically in terms of unitary transformation matrices in Chapter 5: two-

photon Raman processes driven by a circularly polarized pulse red-detuned from the

trion transition energy, spin precession about the external magnetic field and geomet-

ric phases generated by CW-driven Rabi oscillations in one of the trion transitions

in the dot. Detuned circularly polarized pulses were shown to rotate the electron

spin about the optical axis while both the magnetic field and geometric phases were

shown to rotate the spin about the magnetic field axis. Possible spin gates that may

be performed by each spin control process were then presented and used to show

multiple ways in which the important Hadamard gate may be constructed.

Chapter 6 discussed the experimental approach to demonstrating the spin control

mechanisms presented in Chapter 5. Preparation of the electron spin in a pure state by

optical pumping was first discussed theoretically, showing that, in the presence of the

magnetic field, a CW field tuned to one of the trion transitions depletes the population

of the driven electron spin state if the spin lifetime is much longer than the trion

lifetime. Experimental results verifying the ability to optically pump the electron

spin were then discussed, where successful optical pumping was shown to result in a

diminished CW modulated absorption signal. The sensitivity of the CW absorption

signal to the time-averaged population of the driven electron spin state was then

used to measure the amount of population that reenters that state post initialization
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as the result of subsequent optical pulses. This method of read-out, referred to

as optical tripwire read-out, was first employed in studies with a single pulse train,

demonstrating a complete spin Rabi oscillation for detuned circularly polarized pulses

and verifying that the two-photon Raman processes cannot be driven by a linearly

polarized pulse. Optical tripwire read-out was then employed in two-pulse studies

to observe spin precession and the effect of the geometric phases generated by the

operation of the CW field between pulses. The CW-driven trion Rabi oscillations

were found to modulate the spin precession signal at the trion Rabi frequency and

to lead to ¼ phase shifts in the precession signal each time the driven electron spin

population was completely depleted by the CW field. These results verified that both

the magnetic field and geometric phases rotate the spin about the magnetic field axis

and may be used in conjunction with detuned circularly polarized pulses to perform

a universal set of single qubit gates.

Two possible future experiments building upon the results of the previous Chap-

ters were presented in Chapter 7: the density matrix tomography (DMT) of the QD

confined electron spin and the use of linearly polarized pulses to generate the geomet-

ric phases for electron spin rotation. In DMT experiments, the use of spin precession

and a detuned circularly polarized pulse was proposed to measure the different com-

ponents of the spin Bloch vector in {u, v, w} space by optical tripwire read-out. A

calibration procedure enabling the extraction of density matrix elements from optical

tripwire measurements was also suggested. As an example, the DMT procedure was

applied to the case of a Hadamard gate operating on the electron spin, showing how

its operation may be verified by performing DMT for two different initial states of

the electron spin.

For experiments demonstrating pulse-generated geometric phases, the unitary

transformation matrix for the electron spin states was derived for the case of an

x̂ polarized pulse tuned to lie between the transition energies of the two x̂ polarized

optical transitions in the dot. Theoretical results verified the ability to rotate the elec-

tron spin about the magnetic field axis with an x̂ polarized pulse. An experimental

procedure was then discussed showing how the strength of the external magnetic field,
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the pulse bandwidth, the pulse frequency and the pulse power may be determined

for some desired spin rotation angle. Theoretical calculations based on solutions to

the density matrix equations were used to show a ¼ rotation of the spin about the

magnetic field axis using a 1 mW pulse 15 ps in width, demonstrating the feasibility

of implementing such rotations in the laboratory with sufficient control of the pulse

width.

The work presented in this thesis represents considerable progress in characterizing

and controlling single QD spins for quantum information applications. In architec-

tures employing QD spins for quantum computing, each QD spin employed must be

sufficiently characterized to enable the determination of operational parameters, e.g.

the trion absorption range and the pulse powers required for particular spin rotation

operations. As such, the experimental techniques presented here may be built upon

to develop more efficient ways of characterizing individual QD spins, a necessity in

multi QD architectures. Further, utilization of the optical spin control mechanisms

demonstrated in Chatpers 5 and 6 along with those proposed in Chapter 7 for the

execution ultrafast universal single qubit gates would—in conjunction with the use

of two-qubit gates—constitute a crucial step towards the execution of arbitrary gate

operations on an arbitrary number of qubits. With ultrafast single qubit control on

the horizon and efforts under way to develop the samples and techniques necessary

for multi-qubit operations with QD spins, progress towards the development of a

quantum computer with QD spins remains sure and steady.
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APPENDIX A

Calculation of the Selection Rules for a Singly Charged QD

As discussed in Chapter 2, the selection rules for the negatively charged QD can

be derived by calculating the matrix elements of the quantity

r

r
= −C1

−1²̂+1 + C1
0 ²̂0 − C1

+1²̂−1 (A.1)

with

²̂±1 = ∓1

2
(x̂± iŷ) = ∓¾̂±, ²̂0 = ẑ (A.2)

C l
m =

(
4¼

2l + 1

) 1
2

Y l
m. (A.3)

Given the form of Equation A.1, calculation of the matrix elements will require the

evaluation of terms of the form ⟨l′s′j′m′
j∣C1

q ∣lsjmj⟩ where q is ±1 or 0. The first step

in evaluating this type of expression is to use the Wigner-Eckart theorem [222]

⟨l′s′j′m′
j∣C1

q ∣lsjmj⟩ = (−1)j
′−m′

j

⎛
⎝ j′ 1 j

−m′
j q mj

⎞
⎠ ⟨l′s′j′∣C1∣lsj⟩ (A.4)

where the quantity in parentheses is the Wigner 3-j symbol. This can be further

simplified by utilizing expressions for the scalar product of two tensors, setting the

first tensor to the Racah tensor and the second to the identity tensor [222]. This

enables expression of the bra-ket term in Equation A.4 as

⟨l′s′j′∣C1∣nlsj⟩ = (−1)l
′+s+j+1

√
(2j′ + 1)(2j + 1)

⎧
⎨
⎩

l′ l 1

j j′ s

⎫
⎬
⎭ ⟨l′∣∣C1∣∣l⟩±s′,s (A.5)
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Figure A.1: Transitions for which the matrix elements of r/r are calculated, indicated by the

dashed green arrows, for the two magnetic field cases.

where the curly-bracketed quantity is the Wigner 6-j symbol. We now note that for

transitions of interest the spin quantum number s remains constant so the Kronecker

delta in Equation A.5 evaluates to 1 and s′ → s. Using the identity [222]

⟨l′∣∣C1∣∣l⟩ = (−1)l
′√

(2l′ + 1)(2l + 1)

⎛
⎝ l′ 1 l

0 0 0

⎞
⎠ (A.6)

allows us to write the final expression for the matrix element as

⟨l′sj′m′
j∣C1

q ∣lsjmj⟩ = (−1)j
′−m′

j+j+s+1
√

(2j′ + 1)(2j + 1)(2l′ + 1)(2l + 1)×
⎛
⎝ j′ 1 j

−m′
j q mj

⎞
⎠

⎧
⎨
⎩

l′ l 1

j j′ s

⎫
⎬
⎭

⎛
⎝ l′ 1 l

0 0 0

⎞
⎠ .

(A.7)

Use of Equation A.7 in conjunction with Tables 2.1 and 2.2 allows straightforward

determination of the selection rules for a singly charged InAs QD with and without

an externally applied magnetic field. To illustrate the determination of a particular

transition’s polarization, we show the calculation for the ∣z+⟩ → ∣Tz+⟩ transition:
〈
Tz +

∣∣∣r
r

∣∣∣ z+
〉
=

〈
1
1

2

3

2

3

2

∣∣∣∣− C1
−1²̂+1 + C1

0 ²̂0 − C1
+1²̂−1

∣∣∣∣1
1

2

1

2

1

2

〉

= −
〈
1
1

2

3

2

3

2

∣∣∣∣C1
−1

∣∣∣∣1
1

2

1

2

1

2

〉

︸ ︷︷ ︸
→0

²̂+1 +

〈
1
1

2

3

2

3

2
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0

∣∣∣∣1
1

2

1

2
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2
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⇒
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From the result of the calculation we see that the matrix element for the ∣z+⟩ to

∣Tz+⟩ transition is polarized along ¾̂− (where we ignore the constant in front). In

considering the form of the optical dipole interaction, −¹ ⋅E where ¹ is the transition

dipole and E is the electric field, only ¾̂+ polarized light couples the transition, and,

hence, the transition is considered ¾̂+ polarized. Carrying out these calculations for

all transitions yields the selection rules shown in Figure 2.4.

For convenience, the matrix representations for the dipole operator ¹ are given

below both with and without an external magnetic field. For Bext = 0,

∣z+⟩ ∣z−⟩ ∣Tz−⟩ ∣Tz+⟩

¹ =

⟨z+∣
⟨z−∣
⟨Tz−∣
⟨Tz+∣

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 ¹¾̂+

0 0 −¹¾̂− 0

0 −¹¾̂+ 0 0

¹¾̂− 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

(A.8)

while for Bext = Bx̂

∣x+⟩ ∣x−⟩ ∣Tx−⟩ ∣Tx+⟩

¹ =

⟨x+∣
⟨x−∣
⟨Tx−∣
⟨Tx+∣

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 −i¹ŷ −¹x̂

0 0 −¹x̂ −i¹ŷ

i¹ŷ −¹x̂ 0 0

−¹x̂ i¹ŷ 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦
.

(A.9)



APPENDIX B

Transformation Relations Between the ẑ and x̂ Density Matrix Elements:

Derivation

Here we derive the transformation relations between density matrix elements in

the ẑ and x̂ bases. To do this, we diagonalize the matrix representation of the ẑ basis

Hamiltonian for an external DC magnetic field Bext = Bx̂. The total Hamiltonian in

this case is H = H0 + HZeeman where H0 is the Hamiltonian in the absence of any

external fields and HZeeman is the Zeeman interaction Hamiltonian with the operator

representation

ĤZeeman = ge¹BBŝe − gℎ¹BBŝℎ = Δeŝe −Δℎŝℎ (B.1)

where ge(gℎ) is the electron (heavy-hole) g-factor, ¹B is the Bohr magneton and ŝe(ŝℎ)

is the spin operator corresponding to the electron (heavy-hole). In matrix form, the

total Hamiltonian,

∣z+⟩ ∣z−⟩ ∣Tz−⟩ ∣Tz+⟩

H =

⟨z+∣
⟨z−∣
⟨Tz−∣
⟨Tz+∣

ℏ

⎡
⎢⎢⎢⎢⎢⎢⎣

0 Δe

2
0 0

Δe

2
0 0 0

0 0 !0 −Δℎ

2

0 0 −Δℎ

2
!0

⎤
⎥⎥⎥⎥⎥⎥⎦
,

(B.2)

can be diagonalized by separately diagonalizing the 2 × 2 matrices representing the

electron and trion states, i.e. by diagonalizing the matrices

He = ℏ

⎡
⎣ 0 Δe

2

Δe

2
0

⎤
⎦ , Hℎ = ℏ

⎡
⎣ !0 −Δℎ

2

−Δℎ

2
!0

⎤
⎦ . (B.3)
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The diagonalization process yields the state transformation relations

∣x−⟩ = eiÁ1

2
[∣z−⟩ − ∣z+⟩] , ∣x+⟩ = eiÁ1

2
[∣z−⟩+ ∣z+⟩] (B.4)

∣Tx−⟩ = eiÁ2

2
[∣Tz−⟩ − ∣Tz+⟩] , ∣Tx+⟩ = eiÁ2

2
[∣Tz−⟩+ ∣Tz+⟩] (B.5)

where the Ái are arbitrary phases accounting for the ambiguity in electron and trion

wavefunction definitions. Using the labeling scheme of Tables 2.1 and 2.2 we obtain

the set of transformation relations for x̂ basis density matrix elements in terms of ẑ

basis density matrix elements given in the table below.

x̂ basis: ½ij = ∣i⟩⟨j∣, ẑ basis: ½ij = ∣i⟩⟨j∣
½11 =

1
2
[½11 + ½22 + ½12 + ½21] ½13 =

1
2
ei(Á1−Á2) [−½13 + ½14 − ½23 + ½24]

½22 =
1
2
[½11 + ½22 − ½12 − ½21] ½31 =

1
2
e−i(Á1−Á2) [−½31 + ½41 − ½32 + ½42]

½33 =
1
2
[½33 + ½44 − ½34 − ½43] ½14 =

1
2
ei(Á1−Á2) [½13 + ½14 + ½23 + ½24]

½44 =
1
2
[½33 + ½44 + ½34 + ½43] ½41 =

1
2
e−i(Á1−Á2) [½31 + ½41 + ½32 + ½42]

½12 =
1
2
[½11 − ½22 − ½12 + ½21] ½23 =

1
2
ei(Á1−Á2) [−½13 + ½14 + ½23 − ½24]

½21 =
1
2
[½11 − ½22 + ½12 − ½21] ½32 =

1
2
e−i(Á1−Á2) [−½31 + ½41 + ½32 − ½42]

½34 =
1
2
[−½33 + ½44 − ½34 + ½43] ½24 =

1
2
ei(Á1−Á2) [½13 + ½14 − ½23 − ½24]

½43 =
1
2
[−½33 + ½44 + ½34 − ½43] ½42 =

1
2
e−i(Á1−Á2) [½31 + ½41 − ½32 − ½42]

Table B.1: x̂ basis density matrix elements in terms of ẑ basis density matrix elements.

ẑ basis density matrix elements in terms of x̂ density matrix elements can be obtained

by applying the substitutions □ → □ and □ → □ and taking the complex conjugate

of the leading exponential terms.



APPENDIX C

Relationship Between the Electron Spin Bloch Sphere Coordinates in

{u, v, w} Space and {x, y, z} Space

Here, we derive the relationship between the {u, v, w} space and {x, y, z} space

Bloch sphere coordinates for the electron spin. To do this, we first derive relationships

between the eigenkets of the Pauli spin matrices. These matrices are of the form

¾z =

⎡
⎣ 1 0

0 −1

⎤
⎦ ¾x =

⎡
⎣ 0 1

1 0

⎤
⎦ ¾y =

⎡
⎣ 0 −i

i 0

⎤
⎦ (C.1)

and we use the notation

∣z+⟩ →
⎡
⎣ 1

0

⎤
⎦ , ∣z−⟩ →

⎡
⎣ 0

1

⎤
⎦ (C.2)

to describe the ẑ basis spin projections, which are the eigenkets of the ¾z operator.

We can write the eigenkets for the spin projections in the x̂ and ŷ bases in terms of

the ẑ basis states by diagonalizing the ¾x and ¾y matrices. Doing this, we obtain

∣x±⟩ = 1√
2
[∣z+⟩ ∓ ∣z−⟩] (C.3)

∣y±⟩ = 1√
2
[∣z+⟩ ∓ i∣z−⟩] . (C.4)

Next, we write the ẑ basis states in terms of the x̂ basis states to develop expressions
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for the ŷ basis states in terms of x̂ basis states:

∣z±⟩ = ± 1√
2
[∣x+⟩ ± ∣x−⟩] (C.5)

∣y±⟩ = 1√
2

[(
1√
2
[∣x+⟩+ ∣x−⟩]

)
∓ i

(
− 1√

2
[∣x+⟩ − ∣x−⟩]

)]
(C.6)

=
1

2
[(1± i)∣x+⟩+ (1∓ i)∣x−⟩] (C.7)

=
1√
2

[
e±i¼/4∣x+⟩+ e∓i¼/4∣x−⟩] (C.8)

=
e±i¼/4

√
2

[∣x+⟩+ e∓i¼/2∣x−⟩] (C.9)

∣y±⟩ = e±i¼/4

√
2

[∣x+⟩ ∓ i∣x−⟩] (C.10)

With these definitions, we now consider the wavefunction of the electron spin for

different orientations of the spin Bloch vector in the û-v̂ plane. The definitions of the

various system parameters (originally given in Section 5.1.2) are

B =

⎡
⎢⎢⎢⎣

Bu

Bv

Bw

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

2Re[½̃12(t)]

−2Im[½̃12(t)]

½̃22(t)− ½̃11(t)

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

2Re[C̃1(t)C̃
∗
2(t)]

−2Im[C̃1(t)C̃
∗
2(t)]

C̃2(t)C̃
∗
2(t)− C̃1(t)C̃

∗
1(t)

⎤
⎥⎥⎥⎦ (C.11)

where the C̃i = Ci are the probability amplitudes of the electron wavefunction in the

x̂ basis, i.e.

∣Ψe
x(t)⟩ = C1(t)∣x+⟩+ C2(t)∣x−⟩. (C.12)

From Equation C.11 we can immediately deduce the relationship between the ŵ and

x̂ axes as ŵ = −x̂, as spin projections along ±x̂ correspond to Bw values of ∓1.

To determine the relationship between the remaining coordinates, we derive ex-

pressions for the electron spin wavefunction based on the values of ½12 for orientations

of the Bloch vector along ±û and ±v̂. For these cases, we have

B∣∣ ± û : Re [C1C
∗
2 ] = ±1

2
(C.13)

B∣∣ ± v̂ : Im [C1C
∗
2 ] = ∓1

2
. (C.14)
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Figure C.1: Relationship between Bloch sphere coordinates in {u, v, w} space and {x, y, z} space.

We rewrite the probability amplitudes as

Cj = Aje
iÁj , j = {1, 2} (C.15)

where each Aj is a pure real positive number and Áj is a phase. For the case of

orientation along ±û we have the following system of equations:

±1

2
= A1A2Re

[
ei(Á1−Á2)

]
= A1A2 cos(Á1 − Á2) (C.16)

1 = ∣C1∣2 + ∣C2∣2 = A2
1 + A2

2. (C.17)

Solving, we find

1√
2
= A1 = A2 (C.18)

Á1 − Á2 =

⎧
⎨
⎩

2n¼, for + û

(2n+ 1)¼, for − û
, (C.19)

yielding expressions for the electron wavefunction at these orientations of the form

∣Ψe
B∣∣±û⟩ =

eiÁ1

√
2
[∣x+⟩ ± ∣x−⟩] . (C.20)

Following the same procedure for orientations along ±v̂, we find

∣Ψe
B∣∣±v̂⟩ =

eiÁ1

√
2
[∣x+⟩ ∓ i∣x−⟩] . (C.21)

Upon inspection, we notice that the electron spin wavefunction for spin Bloch

vector orientations along ±û and ±v̂ correspond to electron spin projections along



121

±ẑ and ±ŷ, respectively, in real space, i.e.

∣Ψe
B∣∣±û⟩ ∝ ∣z±⟩ (C.22)

∣Ψe
B∣∣±v̂⟩ ∝ ∣y±⟩. (C.23)

Summarizing the relationship between Bloch sphere coordinates and real space coor-

dinates, we have

±ŵ → ∓x̂ (C.24)

±û → ±ẑ (C.25)

±v̂ → ±ŷ, (C.26)

as illustrated in Figure C.1.
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“Quantum-Dot Spin-State Preparation with Near-Unity Fidelity”, Science 310,
551 (2006).

[127] C. Emary, X. Xu, D. G. Steel, S. Saikin, L. J. Sham, “Fast Initialization of the
Spin State of an Electron in a Quantum Dot in the Voigt Configuration”, Phys.
Rev. Lett. 98, 047401 (2007).

[128] X. Xu, Y. Wu, B. Sun, Q. Huang, J. Cheng, D. Steel, A. Bracker, D. Gammon,
C. Emary, L. Sham, “Fast spin state initialization in a singly charged InAs-GaAs
quantum dot by optical cooling”, Phys. Rev. Lett. 99, 097401 (2007).

[129] B. D. Gerardot, D. Brunner, P. A. Dalgarno, P. Öhberg, S. Seidl, M. Kroner,
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