## **Supplementary Information**

### I. Sample details

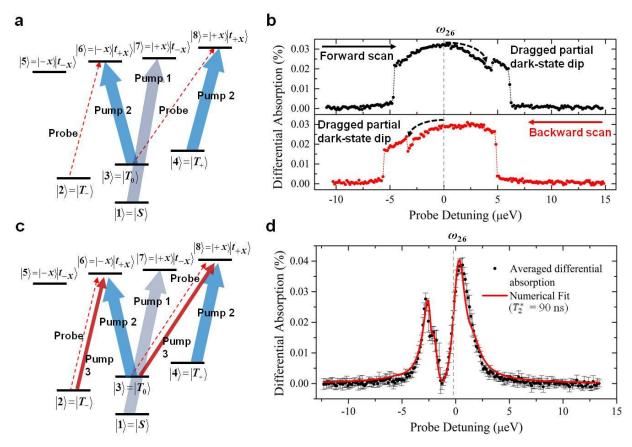
In the set of experiments described in the main body, we study an InAs/GaAs QDM in which the QDs are separated by 3 nm of GaAs, 3 nm of Al<sub>0.3</sub>Ga<sub>0.7</sub>As, and another 3 nm of GaAs, which act as the electron tunneling barrier. The vertically-stacked QDMs are separated by 40-nm-thick intrinsic GaAs from an n-doped ( $10^{15}$  cm<sup>-3</sup> Si) GaAs buffer layer on an n-type GaAs substrate. These QD complexes are capped by a 280-nm-thick intrinsic GaAs, followed by 25 nm of Al<sub>0.3</sub>Ga<sub>0.7</sub>As as a current blocker. This entire structure is contained within a Schottky diode, allowing for the deterministic loading of electrons into the QDM, as well as energy level tuning via the DC Stark shift. For this particular QDM, the upper QD (3.2 nm) is made thicker than the lower QD (2.6 nm).

#### II. Stark shift modulation spectroscopy details

All of the data data displayed in the paper were measure using Stark shift modulated absorption spectroscopy, where the sample is modulated at 10 kHz with a 100 mV peak-to-peak square wave, and the transmitted intensity is measured by an avalanche photodiode (APD) connected to a lock-in amplifier. The dipole moments for transitions  $\omega_{25}$ ,  $\omega_{26}$ ,  $\omega_{47}$  and  $\omega_{48}$  are theoretically of equal magnitude and are estimated to be 0.086 ueV/sqrt(nW), or equivalently 15 Debye, assuming a focal spot size of 1 um in GaAs. For all other transitions, the dipole moments are reduced by a factor of sqrt(2).

#### III. Modeling QDM-field interaction of the eight-level system using master equations

To prepare the system in T. state, one simply follows the configuration as shown in Fig. S1a. As mentioned in the main text, this is the case where the resonance seems to follow the scanning of the laser, giving rise to absorption profiles with round tops. (Fig. S1b) When Pump 3 is applied to stabilized the nuclear spins (Fig. S1c), a dark-state spectrum is recovered, as revealed in Fig. S1d. The best-fit value for ground state dephasing time  $T_2^*$  in this case is determined to be 90 ns. The shorter  $T_2^*$  extracted here compared to the case presented in the main text is mainly due the larger standard deviation around the minimum of the dark-state dip. This is likely a result of inadequate nuclear spin locking arising from a slight deviation of the pump detunings from the two-photon resonance, as evident by the "kink" in the spectrum at the probe detuning of -2.5  $\mu$ eV. The procedure for fitting the dark-state lineshape using the eight-level master equation is outlined below.



**Figure S1 a.** Pump configuration for  $T_1$  state preparation. **b.** Probe absorption spectra following the pumping scheme in **a.** In the upper panel, the horizontally polarized probe is scanned in forward direction across  $\omega_{26}$  (=  $\omega_{38}$ ) transition. In the lower panel, the probe laser is scanned in backward direction. **c.** Pump 3 is added to the configuration shown in **a** to suppress the effect of DNSP. **d.** Probe absorption spectrum showing the recovery of dark-state profile. Solid circles in the plot represent averaged data points obtained from a series of 7 scans and the error bars show standard deviations. Red (Grey) solid lines is the theoretical fit.

Using dipole and Rotating-wave approximations, we write the Hamiltonian for the QDM-field system in Schrödinger picture as

$$H_{S} = \hbar \begin{bmatrix} \nu_{1} & 0 & 0 & 0 & 0 & -\frac{\tilde{\chi}_{1}(t)}{\sqrt{2}} & 0\\ 0 & \nu_{2} & 0 & 0 & 0 & \tilde{\chi}_{3}(t) + \tilde{\chi}_{p}(t) & 0 & 0\\ 0 & 0 & \nu_{3} & 0 & 0 & \frac{\tilde{\chi}_{2}(t)}{\sqrt{2}} & 0 & \frac{\tilde{\chi}_{3}(t) + \tilde{\chi}_{p}(t)}{\sqrt{2}}\\ 0 & 0 & 0 & v_{4} & 0 & 0 & 0 & \tilde{\chi}_{2}(t)\\ 0 & 0 & 0 & 0 & v_{5} & 0 & 0 & 0\\ 0 & \tilde{\chi}_{3}^{*}(t) + \tilde{\chi}_{p}^{*}(t) & \frac{\tilde{\chi}_{2}^{*}(t)}{\sqrt{2}} & 0 & 0 & v_{6} & 0 & 0\\ -\frac{\tilde{\chi}_{1}^{*}(t)}{\sqrt{2}} & 0 & 0 & 0 & 0 & v_{7} & 0\\ 0 & 0 & \frac{\tilde{\chi}_{3}^{*}(t) + \tilde{\chi}_{p}^{*}(t)}{\sqrt{2}} & \tilde{\chi}_{2}^{*}(t) & 0 & 0 & 0 & v_{8} \end{bmatrix}$$

$$(1)$$

The matrix elements are defined as

$$v_{1} = -J_{ex} \qquad v_{5} = \omega_{0} - \frac{\mu_{B}}{2\hbar} (g_{e} - 3g_{h})B$$

$$v_{2} = -\frac{\mu_{B}}{\hbar} g_{e}B \qquad v_{6} = \omega_{0} - \frac{\mu_{B}}{2\hbar} (g_{e} + 3g_{h})B$$

$$v_{3} = 0 \qquad v_{7} = \omega_{0} + \frac{\mu_{B}}{2\hbar} (g_{e} + 3g_{h})B$$

$$v_{4} = \frac{\mu_{B}}{\hbar} g_{e}B \qquad v_{8} = \omega_{0} + \frac{\mu_{B}}{2\hbar} (g_{e} - 3g_{h})B$$

$$\tilde{\chi}_{1}(t) = \frac{\Omega_{1}}{2} e^{i\omega_{1}t} \qquad \tilde{\chi}_{3}(t) = \frac{\Omega_{3}}{2} e^{i\omega_{3}t}$$

$$\tilde{\chi}_{2}(t) = \frac{\Omega_{2}}{2} e^{i\omega_{2}t} \qquad \tilde{\chi}_{p}(t) = \frac{\Omega_{p}}{2} e^{i\omega_{p}t}$$

Here we assume that the energy separation between any two states is much larger than the natural linewidths of the optical transitions, so that each field drives only one transition except where a degeneracy occurs, e.g.  $\omega_{26}=\omega_{38}.$   $J_{ex}$  is the Coulomb-exchange coupling which gives rise to the energy splitting between S and  $T_0$  states.  $\mu_B$  is the Bohr magneton, B the applied magnetic field, while  $g_e$  and  $g_h$  are electron and heavy-hole g-factors respectively.  $\omega_0$  represents the optical resonance frequency for the triplet transitions at zero magnetic field. The Rabi frequencies for the optical fields are denoted by  $\Omega_1$ ,  $\Omega_2$ ,  $\Omega_3$  and  $\Omega_p$  for Pump 1, Pump 2, Pump 3 and probe respectively and their optical frequencies by  $\omega_1$ ,  $\omega_2$ ,  $\omega_3$  and  $\omega_p$ .

The presence of two fields, Pump 3 and the probe, driving the same transitions makes the computation of steady-state solutions nontrivial. Here, the first-order probe absorption is determined perturbatively from a steady state solution in which all orders in the pump intensities are included, following the approach outlined in Berman & Malinovsky<sup>1</sup>. For convenience in numerical calculations, it is desirable to re-write Eq. (1) in another basis where the exponents in the off-diagonal matrix elements vanish, except for the cases where both Pump 3 and the probe are involved. This can be easily achieved by using the diagonal unitary operator U(t), with its diagonal elements given by  $\{e^{-i\omega_1t/2}, e^{i(\omega_2-\omega_3)t}, 1, e^{i(\omega_3-\omega_2)t}, 1, e^{i\omega_2t}, e^{i\omega_1t/2}, e^{i\omega_3t}\}$ . The rotated Hamiltonian,  $H_f$ , is then given by

$$\begin{split} H_f &= i\hbar \left[\frac{d}{dt}U(t)\right]U^\dagger(t) + U(t)H_SU^\dagger(t) \\ &= \begin{bmatrix} \nu_1 + \frac{\omega_1}{2} & 0 & 0 & 0 & 0 & \frac{\Omega_1}{2\sqrt{2}} & 0 \\ 0 & \nu_2 - \omega_2 + \omega_3 & 0 & 0 & 0 & \frac{\Omega_3 + \Omega_p e^{-i\Delta t}}{2} & 0 & 0 \\ 0 & 0 & \nu_3 & 0 & 0 & \frac{\Omega_2}{2\sqrt{2}} & 0 & \frac{\Omega_3 + \Omega_p e^{-i\Delta t}}{2\sqrt{2}} \\ 0 & 0 & 0 & \nu_4 + \omega_2 - \omega_3 & 0 & 0 & 0 & \frac{\Omega_2}{2} \\ 0 & 0 & 0 & 0 & \nu_5 & 0 & 0 & 0 \\ 0 & \frac{\Omega_3^* + \Omega_p^* e^{i\Delta t}}{2} & \frac{\Omega_2^*}{2\sqrt{2}} & 0 & 0 & \nu_6 - \omega_2 & 0 & 0 \\ \frac{\Omega_1^*}{2\sqrt{2}} & 0 & 0 & 0 & 0 & 0 & \nu_7 - \frac{\omega_1}{2} & 0 \\ 0 & 0 & \frac{\Omega_3^* + \Omega_p^* e^{i\Delta t}}{2\sqrt{2}} & \frac{\Omega_2^*}{2\sqrt{2}} & 0 & 0 & 0 & \nu_8 - \omega_3 \end{bmatrix} \end{split}$$

where  $\Delta = \omega_3 - \omega_p$ . Let  $\rho$  be the 8-by-8 density matrix and its elements denoted by  $\rho_{ij}$ . The master equation is

$$\frac{d}{dt}\rho = -\frac{i}{\hbar}[H_f, \rho] + \text{relaxation}$$
 (2)

To determine the elements of the relaxation term, we assume that ground state population relaxation is negligible so that the only experimental parameters in the relaxation term are the trion recombination rate,  $\Gamma_r$  and the optical ground state decoherence rate,  $\Gamma_g$ , with  $\Gamma_r \gg \Gamma_g$ . We further assume a "lumped model" for the ground state decoherence where  $\Gamma_g$  between any two states has the same magnitude. The relaxation term can thus be written explicit as

$$\begin{bmatrix} \frac{\Gamma_r(\rho_{55}+\rho_{66}+\rho_{77}+\rho_{88})}{4} & -\Gamma_g\rho_{12} & -\Gamma_g\rho_{13} & -\Gamma_g\rho_{14} & -\frac{\Gamma_r\rho_{15}}{2} & -\frac{\Gamma_r\rho_{16}}{2} & -\frac{\Gamma_r\rho_{17}}{2} & -\frac{\Gamma_r\rho_{18}}{2} \\ -\Gamma_g\rho_{21} & \frac{\Gamma_r(\rho_{55}+\rho_{66})}{2} & -\Gamma_g\rho_{23} & -\Gamma_g\rho_{24} & -\frac{\Gamma_r\rho_{25}}{2} & -\frac{\Gamma_r\rho_{25}}{2} & -\frac{\Gamma_r\rho_{27}}{2} & -\frac{\Gamma_r\rho_{28}}{2} \\ -\Gamma_g\rho_{31} & -\Gamma_g\rho_{32} & \frac{\Gamma_r(\rho_{55}+\rho_{66}+\rho_{77}+\rho_{88})}{4} & -\Gamma_g\rho_{34} & -\frac{\Gamma_r\rho_{35}}{2} & -\frac{\Gamma_r\rho_{35}}{2} & -\frac{\Gamma_r\rho_{37}}{2} & -\frac{\Gamma_r\rho_{38}}{2} \\ -\Gamma_g\rho_{41} & -\Gamma_g\rho_{42} & -\Gamma_g\rho_{43} & \frac{\Gamma_r(\rho_{77}+\rho_{88})}{2} & -\frac{\Gamma_r\rho_{45}}{2} & -\frac{\Gamma_r\rho_{45}}{2} & -\frac{\Gamma_r\rho_{47}}{2} & -\frac{\Gamma_r\rho_{48}}{2} \\ -\frac{\Gamma_r\rho_{51}}{2} & -\frac{\Gamma_r\rho_{52}}{2} & -\frac{\Gamma_r\rho_{63}}{2} & -\frac{\Gamma_r\rho_{64}}{2} & -\Gamma_r\rho_{55} -\Gamma_r\rho_{56} -\Gamma_r\rho_{57} -\Gamma_r\rho_{58} \\ -\frac{\Gamma_r\rho_{71}}{2} & -\frac{\Gamma_r\rho_{62}}{2} & -\frac{\Gamma_r\rho_{63}}{2} & -\frac{\Gamma_r\rho_{64}}{2} & -\Gamma_r\rho_{65} -\Gamma_r\rho_{66} -\Gamma_r\rho_{67} -\Gamma_r\rho_{68} \\ -\frac{\Gamma_r\rho_{71}}{2} & -\frac{\Gamma_r\rho_{72}}{2} & -\frac{\Gamma_r\rho_{72}}{2} & -\frac{\Gamma_r\rho_{73}}{2} & -\frac{\Gamma_r\rho_{74}}{2} & -\Gamma_r\rho_{75} -\Gamma_r\rho_{76} -\Gamma_r\rho_{77} -\Gamma_r\rho_{78} \\ -\frac{\Gamma_r\rho_{61}}{2} & -\frac{\Gamma_r\rho_{62}}{2} & -\frac{\Gamma_r\rho_{83}}{2} & -\frac{\Gamma_r\rho_{83}}{2} & -\frac{\Gamma_r\rho_{84}}{2} -\Gamma_r\rho_{75} -\Gamma_r\rho_{66} -\Gamma_r\rho_{77} -\Gamma_r\rho_{78} \\ -\frac{\Gamma_r\rho_{61}}{2} & -\frac{\Gamma_r\rho_{62}}{2} & -\frac{\Gamma_r\rho_{83}}{2} & -\frac{\Gamma_r\rho_{83}}{2} & -\Gamma_r\rho_{85} -\Gamma_r\rho_{86} -\Gamma_r\rho_{77} -\Gamma_r\rho_{78} \\ -\frac{\Gamma_r\rho_{61}}{2} & -\frac{\Gamma_r\rho_{62}}{2} & -\frac{\Gamma_r\rho_{62}}{2} & -\frac{\Gamma_r\rho_{63}}{2} & -\frac{\Gamma_r\rho_{64}}{2} -\Gamma_r\rho_{75} -\Gamma_r\rho_{76} -\Gamma_r\rho_{77} -\Gamma_r\rho_{78} \\ -\frac{\Gamma_r\rho_{61}}{2} & -\frac{\Gamma_r\rho_{62}}{2} & -\frac{\Gamma_r\rho_{62}}{2} & -\frac{\Gamma_r\rho_{63}}{2} & -\frac{\Gamma_r\rho_{64}}{2} -\Gamma_r\rho_{75} -\Gamma_r\rho_{76} -\Gamma_r\rho_{77} -\Gamma_r\rho_{78} \\ -\frac{\Gamma_r\rho_{61}}{2} & -\frac{\Gamma_r\rho_{62}}{2} & -\frac{\Gamma_r\rho_{62}}{2} & -\frac{\Gamma_r\rho_{63}}{2} & -\frac{\Gamma_r\rho_{64}}{2} -\Gamma_r\rho_{75} -\Gamma_r\rho_{76} -\Gamma_r\rho_{77} -\Gamma_r\rho_{78} \\ -\frac{\Gamma_r\rho_{61}}{2} & -\frac{\Gamma_r\rho_{62}}{2} & -\frac{\Gamma_r\rho_{62}}{2} & -\frac{\Gamma_r\rho_{63}}{2} & -\frac{\Gamma_r\rho_{64}}{2} -\Gamma_r\rho_{75} -\Gamma_r\rho_{76} -\Gamma_r\rho_{77} -\Gamma_r\rho_{78} \\ -\frac{\Gamma_r\rho_{61}}{2} & -\frac{\Gamma_r\rho_{62}}{2} & -\frac{\Gamma_r\rho_{62}}{2} & -\frac{\Gamma_r\rho_{64}}{2} -\Gamma_r\rho_{65} -\Gamma_r\rho_{66} -\Gamma_r\rho_{77} -\Gamma_r\rho_{78} \\ -\frac{\Gamma_r\rho_{61}}{2} & -\frac{\Gamma_r\rho_{62}}{2} & -\frac{\Gamma_r\rho_{62}}{2} & -\frac{\Gamma_r\rho_{64}}{2} -\Gamma_r\rho_{65} -\Gamma_r\rho_{66} -\Gamma_r\rho_{77} -\Gamma_r\rho_{78} \\ -\frac{\Gamma$$

An approximate steady-state solution would have the form

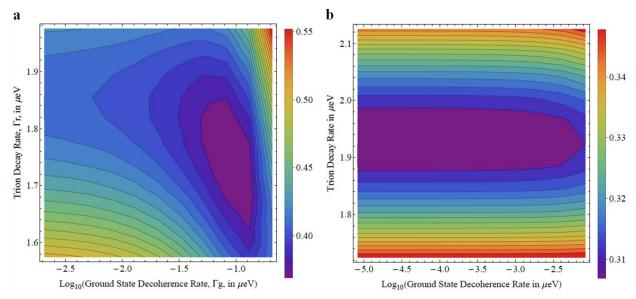
$$\rho_{ij} = \rho_{ij}^{(0)} + \rho_{ij}^{(1)} \tag{3}$$

where  $\rho_{ij}^{(0)}$  is the steady-state solution of Eq. (2) with  $\Omega_p$  equals zero. We take

$$\rho_{ii}^{(1)} = a_{ij} + b_{ij}e^{i\Delta t} + c_{ij}e^{-i\Delta t}$$
(4)

as an ansatz and substitute Eq. (3) and (4) into Eq. (2). By equating the constants and coefficients of  $e^{\pm i\Delta t}$  terms on both sides of Eq. 2, we obtain a system of linear equations in  $a_{ij}$ ,  $b_{ij}$  and  $c_{ij}$ , which are then solved numerically. The sum of the imaginary parts of  $c_{26}$  and  $c_{38}$  is proportional to the probe absorption. To see this, one simply goes back to Schrödinger picture to find that  $c_{26}$  and  $c_{38}$  are the coefficients of  $e^{i\omega_p t}$  term.

As mentioned in the Method Section, lineshape fitting is accomplished by repeatedly calculating the absorption spectra using different values for the fitting parameters. Fig. S2 below shows the error-squares of the resulting fit when  $\Gamma_r$  and  $\Gamma_g$  are varied. In Fig. S2a, corresponding to the fit of the T- transition shown in Fig. S1d, an enclosed region of least error-squares is found. Here the best fitting values for  $\Gamma_r$  and  $\Gamma_g$  can be uniquely determined. However, in Fig. S2b for the T- transition presented in the main text, there is no such enclave for  $\Gamma_g$ . Nonetheless, a lower bound for the spin coherence time is found to be 1.3  $\mu$ s. Tables S1 and S2 summarize the physical parameters of the QDM used in this study and the best-fitting parameter values for both cases.



**Figure S2: a,** Contour plot showing error-squares from the T. transition lineshape fits calculated by varying the values of  $\Gamma_r$  and  $\Gamma_g$ . The model is based on the pumping scheme shown in Fig. S1c. **b,** Contour plot of the error-squares for calculated  $T_+$  transition lineshapes simulating the pumping scheme in Fig. 2c in the main text.

**Table S1:** Physical parameters of the QDM used in this study.

| Constants | $J_{ex}$ | $\omega_0$ | $oldsymbol{g}_{e}$ | $g_h$  |  |
|-----------|----------|------------|--------------------|--------|--|
| Values    | 116.6    | 1294.543   | 0.43               | -0.084 |  |
| Units     | μeV      | meV        | -                  | -      |  |

**Table S2:** Parameters used to produce the fitting curves. All values are in units of μeV.

| Parameters               | $\Omega_1$ | $oldsymbol{\delta_1^*}$ | $\Omega_2$ | $\delta_2$ | $\Omega_3$ | $\delta_3$ | $\Omega_{ m p}$ | $\Gamma_r$ | $\Gamma_g$ |
|--------------------------|------------|-------------------------|------------|------------|------------|------------|-----------------|------------|------------|
| T. (Fig. 4b)             | 1.96       | N/A                     | 1.82       | -0.61      | 0.35       | -1.55      | 0.19            | 1.78       | 0.050      |
| T <sub>+</sub> (Fig. 4d) | 1.86       | N/A                     | 1.86       | -1.06      | 0.36       | -1.41      | 0.19            | 1.93       | 0.0032     |

 $<sup>\</sup>delta_i$  denotes detuning from corresponding transition.

#### III. Estimating the intrinsic nuclear Overhauser field distribution in an InAs QD

An order-of-magnitude estimate of the intrinsic nuclear Overhauser field distribution can be derived as follows: The field contributed by type- $\alpha$  isotope in a single primitive unit cell at position  $\mathbf{r}$ , is given by  $\delta B_{\alpha,\mathbf{r}} = \frac{a_0^3}{4g_e\mu_B} |\Psi_{\rm e}(\mathbf{r})|^2 A_{\alpha,\mathbf{r}}^{en} \hat{I}_{\alpha,\mathbf{r}}$ , where  $a_0$  is the lattice constant,  $\Psi_{\rm e}(\mathbf{r})$  the

electron envelop wavefunction,  $A_{\alpha}^{en}$  the electron-nuclear hyperfine constant and  $\hat{I}_{\alpha,r}$  the nuclear spin-projection. The total Overhauser field,  $B_{OH}$ , as seen by an electron confined within a QD follows the multinomial distribution which approaches the Gaussian distribution for a large number of nuclei. At the experiment temperature of 6 K,  $k_BT = 517 \, \mu eV$ , and is much larger than the nuclear-Zeeman splitting<sup>2</sup>. Hence  $\bar{I}_{\alpha} \approx 0$  and the distribution of  $B_{OH}$  is given by:

$$f(B_{OH}) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{B_{OH}^2}{2\sigma^2}}, \text{ where}$$

$$\sigma = \sqrt{\sum_{r,\alpha} \delta B_{\alpha,r}^2}$$

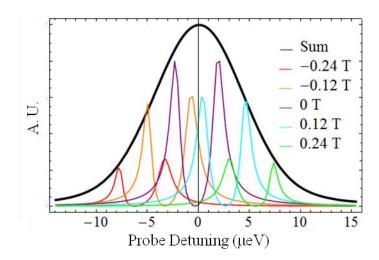
$$= \frac{a_0^3}{4g_e\mu_B} \sqrt{\sum_{r,\alpha} |\Psi_e(r)|^4 (A_{\alpha,r}^{en})^2 \hat{I}_{\alpha,r}^2}$$

$$\approx \frac{1}{g_e\mu_B} \sqrt{\frac{1}{N} \sum_{\alpha} (A_{\alpha}^{en})^2 \bar{I}_{\alpha}^2} = \frac{1}{g_e\mu_B} \sqrt{\frac{1}{3N} \sum_{\alpha} (A_{\alpha}^{en})^2 I_{\alpha} (I_{\alpha} + 1)}$$

Here N is the number of unit cells in a single QD and  $\bar{I}_{\alpha}^2$  denotes the average of  $I_{\alpha}^2$ . To arrive at the last expression, we assume a uniform  $|\Psi_{\rm e}(r)|^2 = 4/Na_0^3$ , and take into account that each *primitive* unit cell contains an In nucleus and an As nucleus. Assuming a cylindrical QD with a diameter of 10 nm and a height of 3 nm,  $N \approx 4250$  for  $a_0 = 6.05$  Å. Using  $A_{\rm In}^{en} = 56 \,\mu\text{eV}$  and  $A_{\rm As}^{en} = 47 \,\mu\text{eV}$  for spin- $\frac{9}{2}$  In and spin- $\frac{3}{2}$  As nuclei, respectively<sup>3</sup>, we obtain  $\sigma \approx 0.11$  Tesla for the standard deviation of the intrinsic  $B_{OH}$  distribution. This order-of-magnitude estimate is in agreement with the experimentally determined value of 0.15 Tesla.

# IV. Fitting the lineshapes involving finite Overhauser field distributions at singlet transitions of $\omega_{15}$ and $\omega_{18}$

As mentioned in the main text and in the Methods section, the numerical fits for Fig. 3b are generated from absorption spectra corresponding to different Overhauser fields. Here, the Rabi frequencies of the pump lasers can be estimated based on the incident powers and the best-fit parameters obtained in Section I. Besides, the detunings can be easily determined from the positions of the dark-state dips. Assuming that  $\Gamma_r$  remains the same, the only fitting parameters need to be considered here are  $\Gamma_g$  and the Overhauser field distribution. The distribution is constructed from three Gaussian curves with different widths, heights and offsets. The same procedure discussed in Section I is used to find the best-fit value for  $\Gamma_g$  and the Overhauser field distribution. Only this time either  $\Gamma_g$  or the Overhauser field distribution is varied in each iteration, and the lineshape is the distribution-weighted average of many spectra calculated from distinct magnetic fields. A graphical example showing the best-fit lineshape corresponding to the intrinsic Overhauser field distribution (without Pump 3, Fig. 3b) and its several constituent spectra are given in Fig. S3 below.



**Figure S3:** (coloured) Examples of calculated spectra corresponding to a number of selected Overhauser fields and (black) final lineshapes for the "intrinsic" case similar to the one represented by the red solid line shown in Fig. 3b.

#### References

<sup>1</sup> Berman, P. R., & Malinovsky, V. S. *Principles of Laser Spectroscopy and Quantum Optics*, Princeton University Press, Princeton, New Jersey (2011).

<sup>2</sup> Stone, N.J. Table of nuclear magnetic dipole and electric quadrupole moments. *At. Data Nucl. Data Tables* **90**, 75-176 (2005).

<sup>3</sup> Petrov, M.Y. *et al.* Effect of thermal annealing on the hyperfine interaction in InAs/GaAs quantum dots. *Phys. Rev. B* **78**, 045315 (2008).