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Supplementary Information 

I. Sample details 

In the set of experiments described in the main body, we study an InAs/GaAs QDM in which the 

QDs are separated by 3 nm of GaAs, 3 nm of Al0.3Ga0.7As, and another 3 nm of GaAs, which act 

as the electron tunneling barrier. The vertically-stacked QDMs are separated by 40-nm-thick 

intrinsic GaAs from an n-doped (10
15

 cm
-3

 Si) GaAs buffer layer on an n-type GaAs substrate. 

These QD complexes are capped by a 280-nm-thick intrinsic GaAs, followed by 25 nm of 

Al0.3Ga0.7As as a current blocker. This entire structure is contained within a Schottky diode, 

allowing for the deterministic loading of electrons into the QDM, as well as energy level tuning 

via the DC Stark shift. For this particular QDM, the upper QD (3.2 nm) is made thicker than the 

lower QD (2.6 nm). 

II. Stark shift modulation spectroscopy details 

All of the data data displayed in the paper were measure using Stark shift modulated absorption 

spectroscopy, where the sample is modulated at 10 kHz with a 100 mV peak-to-peak square 

wave, and the transmitted intensity is measured by an avalanche photodiode (APD) connected to 

a lock-in amplifier. The dipole moments for transitions ω25, ω26, ω47 and ω48 are theoretically of 

equal magnitude and are estimated to be 0.086 ueV/sqrt(nW), or equivalently 15 Debye, 

assuming a focal spot size of 1 um in GaAs. For all other transitions, the dipole moments are 

reduced by a factor of sqrt(2). 

III. Modeling QDM-field interaction of the eight-level system using master equations 

To prepare the system in T- state, one simply follows the configuration as shown in Fig. S1a. As 

mentioned in the main text, this is the case where the resonance seems to follow the scanning of 

the laser, giving rise to absorption profiles with round tops. (Fig. S1b) When Pump 3 is applied 

to stabilized the nuclear spins (Fig. S1c), a dark-state spectrum is recovered, as revealed in Fig. 

S1d. The best-fit value for ground state dephasing time    
  in this case is determined to be 90 ns. 

The shorter   
  extracted here compared to the case presented in the main text is mainly due the 

larger standard deviation around the minimum of the dark-state dip. This is likely a result of 

inadequate nuclear spin locking arising from a slight deviation of the pump detunings from the 

two-photon resonance, as evident by the “kink” in the spectrum at the probe detuning of -2.5 

μeV. The procedure for fitting the dark-state lineshape using the eight-level master equation is 

outlined below. 
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Using dipole and Rotating-wave approximations, we write the Hamiltonian for the QDM-

field system in Schrödinger picture as  
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The matrix elements are defined as 

Figure S1 a. Pump configuration for T- state preparation. b. Probe absorption spectra following the pumping 

scheme in a. In the upper panel, the horizontally polarized probe is scanned in forward direction across ω26 (= 

ω38) transition. In the lower panel, the probe laser is scanned in backward direction. c. Pump 3 is added to the 

configuration shown in a to suppress the effect of DNSP. d. Probe absorption spectrum showing the recovery of 

dark-state profile. Solid circles in the plot represent averaged data points obtained from a series of 7 scans and the 

error bars show standard deviations. Red  (Grey) solid lines is the theoretical fit. 
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Here we assume that the energy separation between any two states is much larger than the 

natural linewidths of the optical transitions, so that each field drives only one transition except 

where a degeneracy occurs, e.g.     =    .     is the Coulomb-exchange coupling which gives 

rise to the energy splitting between S and T0 states.    is the Bohr magneton,   the applied 

magnetic field, while    and    are electron and heavy-hole g-factors respectively.    represents 

the optical resonance frequency for the triplet transitions at zero magnetic field. The Rabi 

frequencies for the optical fields are denoted by   ,   ,    and    for Pump 1, Pump 2, Pump 3 

and probe respectively and their optical frequencies by   ,   ,    and   . 

The presence of two fields, Pump 3 and the probe, driving the same transitions makes the 

computation of steady-state solutions nontrivial. Here, the first-order probe absorption is 

determined perturbatively from a steady state solution in which all orders in the pump intensities 

are included, following the approach outlined in Berman & Malinovsky
1
. For convenience in 

numerical calculations, it is desirable to re-write Eq. (1) in another basis where the exponents in 

the off-diagonal matrix elements vanish, except for the cases where both Pump 3 and the probe 

are involved. This can be easily achieved by using the diagonal unitary operator     , with its 

diagonal elements given by {        ,           , 1,           , 1,      ,        ,      }. The 

rotated Hamiltonian,   , is then given by 
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where        . Let   be the 8-by-8 density matrix and its elements denoted by    . The 

master equation is 

    
 

  
   

 

 
       re a ati n               (2) 

To determine the elements of the relaxation term, we assume that ground state population 

relaxation is negligible so that the only experimental parameters in the relaxation term are the 

trion recombination rate,    and the optical ground state decoherence rate,   , with      . We 

further assume a “ umped m de ” f r the gr und state dec herence where    between any two 

states has the same magnitude. The relaxation term can thus be written explicit as 

 
 
 
 
 
 
 
 
 
 
 
 
 
                   

 
                   

     

 
 

     

 
 

     

 
 

     

 

      
           

 
             

     

 
 

     

 
 

     

 
 

     

 

            
                   

 
       

     

 
 

     

 
 

     

 
 

     

 

                  
           

 
 

     

 
 

     

 
 

     

 
 

     

 

 
     

 
 

     

 
 

     

 
 

     

 
                        

 
     

 
 

     

 
 

     

 
 

     

 
                        

 
     

 
 

     

 
 

     

 
 

     

 
                        

 
     

 
 

     

 
 

     

 
 

     

 
                         

 
 
 
 
 
 
 
 
 
 
 
 

  

An approximate steady-state solution would have the form 

          
   

    
   

                   (3) 

where    
   

 is the steady-state solution of Eq. (2) with    equals zero. We take 

       
   

         
        

                    (4) 

as an ansatz and substitute Eq. (3) and (4) into Eq. (2).  By equating the constants and 

coefficients of       terms on both sides of Eq. 2, we obtain a system of linear equations in    , 

    and    , which are then solved numerically. The sum of the imaginary parts of     and     is 

proportional to the probe absorption. To see this, one simply goes back to Schrödinger picture to 

find that     and     are the coefficients of       term.  

 As mentioned in the Method Section, lineshape fitting is accomplished by repeatedly 

calculating the absorption spectra using different values for the fitting parameters. Fig. S2 below 

shows the error-squares of the resulting fit when    and    are varied. In Fig. S2a, corresponding 

to the fit of the T- transition shown in Fig. S1d, an enclosed region of least error-squares is found. 

Here the best fitting values for    and    can be uniquely determined. However, in Fig. S2b for 

the T+ transition presented in the main text, there is no such enclave for   . Nonetheless, a lower 

bound for the spin coherence time is f und t  be 1.3 μs. Tab es S1 and S2 summarize the 

physical parameters of the QDM used in this study and the best-fitting parameter values for both 

cases. 
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Figure S2: a, Contour plot showing error-squares from the T- transition lineshape fits calculated by 

varying the values of    and   . The model is based on the pumping scheme shown in Fig. S1c. b, 

Contour plot of the error-squares for calculated T+ transition lineshapes simulating the pumping scheme in 

Fig. 2c in the main text. 

 

Table S1: Physical parameters of the QDM used in this study. 

Constants              

Values 116.6 1294.543 0.43 −0.084 

Units μeV meV - - 

 

Table S2: Parameters used to produce the fitting curves. All values are in units  f μeV. 

Parameters      
                       

T- (Fig. 4b) 1.96 N/A 1.82 −0.61 0.35 −1.55 0.19 1.78 0.050 

T+ (Fig. 4d) 1.86 N/A 1.86 −1.06 0.36 −1.41 0.19 1.93 0.0032 

  *   denotes detuning from corresponding transition. 

 

III. Estimating the intrinsic nuclear Overhauser field distribution in an InAs QD 

An order-of-magnitude estimate of the intrinsic nuclear Overhauser field distribution can be 

derived as follows: The field contributed by type-α isotope in a single primitive unit cell at 

position r, is given by       
  

 

     
       

     
       , where    is the lattice constant,       the 
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electron envelop wavefunction,   
   the electron-nuclear hyperfine constant and       the nuclear 

spin-projection. The total Overhauser field,    , as seen by an electron confined within a QD 

follows the multinomial distribution which approaches the Gaussian distribution for a large 

number of nuclei. At the experiment temperature of 6 K, kBT = 517 μeV, and is much larger than 

the nuclear-Zeeman splitting
2
. Hence       and the distribution of     is given by: 
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Here N is the number of unit cells in a single QD and    
  denotes the average of   

 . To arrive at 

the last expression, we assume a uniform        
      

  , and take into account that each 

primitive unit cell contains an In nucleus and an As nucleus. Assuming a cylindrical QD with a 

diameter of 10 nm and a height of 3 nm, N ≈ 4250 for    = 6.05 Å. Using   n
   = 56 μeV and   s

   

= 47 μeV f r spin- 
 

 
 In and spin- 

 

 
 As nuclei, respectively

3
, we obtain σ ≈ 0.11 Tes a for the 

standard deviation of the intrinsic     distribution. This order-of-magnitude estimate is in 

agreement with the experimentally determined value of 0.15 Tesla. 

 

IV. Fitting the lineshapes involving finite Overhauser field distributions at singlet 

transitions of ω15 and ω18 

As mentioned in the main text and in the Methods section, the numerical fits for Fig. 3b are 

generated from absorption spectra corresponding to different Overhauser fields. Here, the Rabi 

frequencies of the pump lasers can be estimated based on the incident powers and the best-fit 

parameters obtained in Section I. Besides, the detunings can be easily determined from the 

positions of the dark-state dips. Assuming that    remains the same, the only fitting parameters 

need to be considered here are    and the Overhauser field distribution. The distribution is 

constructed from three Gaussian curves with different widths, heights and offsets. The same 

procedure discussed in Section I is used to find the best-fit value for    and the Overhauser field 

distribution. Only this time either    or the Overhauser field distribution is varied in each 

iteration, and the lineshape is the distribution-weighted average of many spectra calculated from 

distinct magnetic fields. A graphical example showing the best-fit lineshape corresponding to the 

intrinsic Overhauser field distribution (without Pump 3, Fig. 3b) and its several constituent 

spectra are given in Fig. S3 below. 
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Figure S3: (coloured) Examples of calculated spectra corresponding to a number of selected Overhauser 

fie ds and (b ack) fina   ineshapes f r the “intrinsic” case simi ar t  the  ne represented by the red solid 
line shown in Fig. 3b. 
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