To be presented at the American Physical Society, Division of Nuclear Physics Fall Meeting
Research Opportunities for Undergraduates (REU) Poster Session
October, 2000

Velocities of Neutron-Rich Fragments of 136Xe on 12C at $E/A = 30$ MeV/u collected at 1.36 T-m and $\theta_{ab} \geq \theta_{grazing}$. A. SICKLES, Gonzaga University, T.W. O’DONNELL, University of Michigan, and the BIGSOL COLLABORATION at the University of Michigan at Ann Arbor and NSCL/Michigan State University — We determine the fragment yields as a function of velocity for multiple-charge-state reaction products of 30 MeV/u 136Xe on a thick carbon target, collected at 1.36 T-m and over an angular range from $0.7^\circ \leq \theta_{ab} \leq 6^\circ$. We previously reported this run to include very neutron-rich nuclei, near the limits of particle stability (the neutron drip-line), including small count rates of: 66Cu, 76Ni, 68Mn and 74Cr. The experiment took place at the National Superconducting Cyclotron Laboratory (NSCL) using the U of M at Ann Arbor’s superconducting solenoid, BigSol, configured as an isotope spectrometer. To obtain fragment yields as a function of velocity, three corrections are made: 1) for energy losses in the thick target using the SRIM program, 2) for missing equilibrium-charge-state fractions using the formulas of Baron et al, and 3) for angular acceptance using code developed for BigSol. The presence of multiple charge states at constant $B \rho$ ($\Delta (B \rho)/B \rho \approx 1.6\%$) gives each isotope’s yield at multiple velocities. The present reaction is of interest for RNB production as high primary-beam fluxes are available at this relatively low energy, the BigSol device identified all charge states and isotopes, and numerous existing facilities can produce such beams. These velocities will next be compared with relevant studies in the literature and with models to understand and optimize the mechanism(s) involved.

Supported in part by US NSF PHY9804869 and the NSF REU program.